Prompting

CS 4804: Introduction to AI

Fall 2025

https://tuvllms.github.io/ai-fall-2025/

Tu Vu

Logistics

- Homework 1 & Quiz 1
 - Quiz 1 due today
 - Homework 1 due 10/14
- Final Project proposal due 10/7
 - Should focus on a research problem

Example: Al models lack fine control over object counts, spatial relations, and scale (OOD/unseen scenes)

Count "3 boats"

Spatial
"a truck is behind a
motorcycle"

Scale"a remote that is bigger than a cat"

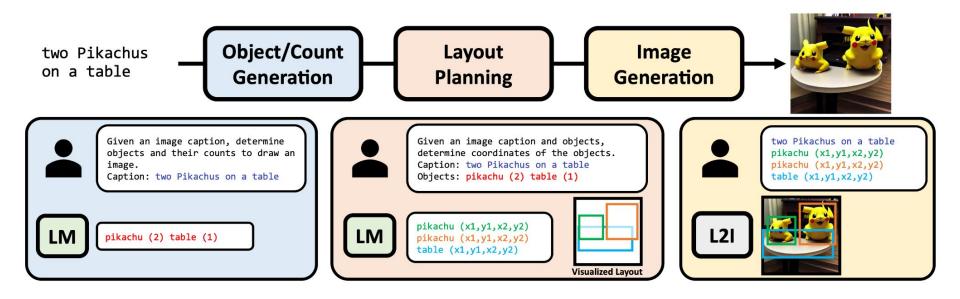
SD v1.4

VPGen

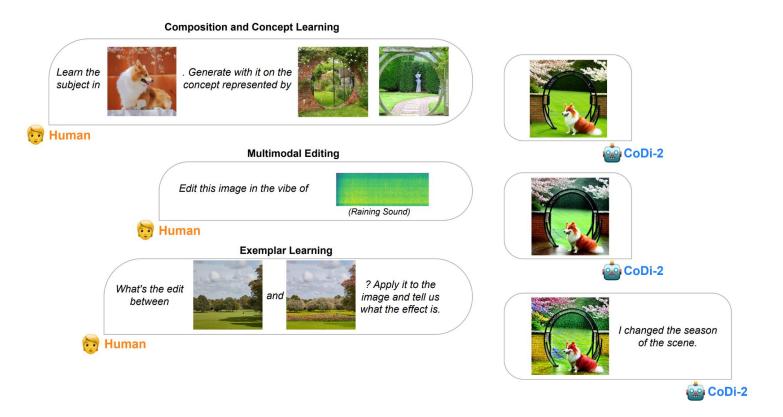
https://arxiv.org/abs/2305.15328

Slide from Mohit Bansal

Example: Handling prompts requiring precise compositional structure



Example: Any-to-any generation



Demo

https://codi-gen.github.io/static/images/teaser.mp4

Prompting

Prompting as Scientific Inquiry

Ari Holtzman

Department of Computer Science University of Chicago Chicago, IL, 60637 aholtzman@uchicago.edu

Chenhao Tan

Department of Computer Science University of Chicago Chicago, IL, 60637 chenhao@uchicago.edu

Abstract

Prompting is the primary method by which we study and control large language models. It is also one of the most powerful: nearly every major capability attributed to LLMs—few-shot learning, chain-of-thought, constitutional AI—was first unlocked through prompting. Yet prompting is rarely treated as science and is frequently frowned upon as alchemy. We argue that this is a category error. If we treat LLMs as a new kind of complex and opaque organism that is trained rather than programmed, then prompting is not a workaround: it is behavioral science. Mechanistic interpretability peers into the neural substrate, prompting probes the model in its native interface: language. We contend that prompting is not inferior, but rather a key component in the science of LLMs.

Prompting is not a mere hack but a scientific methodology for probing, understanding, and controlling Al models via their natural input-output interface.

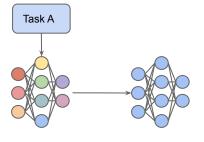
A learning paradigm shift

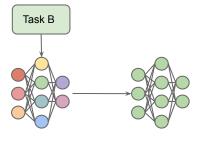
training task-specific models pretraining and then adapting from scratch Task B Task A Task A Task B Task C Task D Task C Task D before since 2018 2018

Image created by Gemini

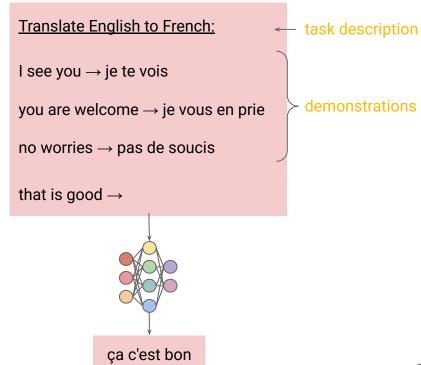
How to adapt a model to a downstream task?

Model Fine-tuning

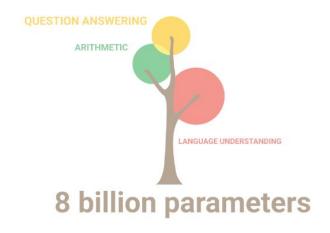




In-context learning/Prompting



Scaling model size unlocks new capabilities



Why do LLMs work so well? Pretraining = Massively multi-task learning?

Prefix {choice_1, choice_2}	Task
In my free time, I like to {run, banana}	Grammar
I went to the zoo to see giraffes, lions, and {zebras, spoon}	Lexical semantics
The capital of Denmark is {Copenhagen, London}	World knowledge
I was laughing the entire time, the movie was {good, bad}	Sentiment analysis
The word for "pretty" in Spanish is {bonita, hola}	Translation
First grade arithmetic exam: $3 + 8 + 4 = \{15, 11\}$	Math question

https://www.jasonwei.net/blog/some-intuitions-about-large-language-models

Why do LLMs work so well? Pretraining = Massively multi-task learning? (cont'd)

Prefix	Next word [task]
A transformer is a deep learning architecture, initially proposed in	2017 [factual recall]
A transformer is a deep learning architecture, initially proposed in 2017	, [comma prediction]
A transformer is a deep learning architecture, initially proposed in 2017,	that [grammar]
A transformer is a deep learning architecture, initially proposed in 2017, that	relies [impossible task?]

https://www.jasonwei.net/blog/some-intuitions-about-large-language-models

Language Models are Few-Shot Learners

Tom B. Bro	wn* Benjamin	Mann* Nick	Ryder* Me	lanie Subbiah*
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Krueger	Tom Henighan
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter
Christopher He	esse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray
Benjar	Benjamin Chess Jack Clark		Christopher Berner	
Sam McCan	dlish Alec Ra	adford Ilya S	utskever I	Dario Amodei

OpenAI

In-context learning

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

In-context learning (cont'd)

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

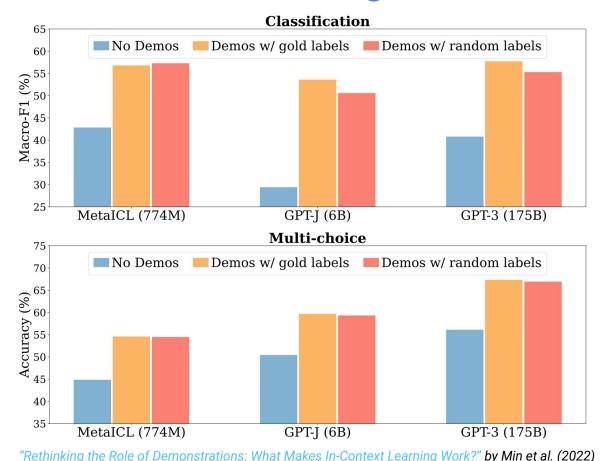
Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

What makes in-context learning work?



Limitations of prompting

Format ID	Prompt	Label Names
1	Review: This movie is amazing! Answer: Positive	Positive, Negative
	Review: Horrific movie, don't see it. Answer:	
2	Review: This movie is amazing! Answer: good	good, bad
	Review: Horrific movie, don't see it. Answer:	
3	My review for last night's film: This movie is amazing! The critics agreed that this movie was good	good, bad
	My review for last night's film: Horrific movie, don't see it. The critics agreed that this movie was	
4	Here is what our critics think for this month's films.	positive, negative
	One of our critics wrote "This movie is amazing!". Her sentiment towards the film was positive.	
	One of our critics wrote "Horrific movie, don't see it". Her sentiment towards the film was	
5	Critical reception [edit]	good, bad
	In a contemporary review, Roger Ebert wrote "This movie is amazing!". Entertainment Weekly agreed, and the overall critical reception of the film was good.	
	In a contemporary review, Roger Ebert wrote "Horrific movie, don't see it". Entertainment Weekly agreed, and the overall critical reception of the film was	
6	Review: This movie is amazing! Positive Review? Yes	Yes, No
	Review: Horrific movie, don't see it. Positive Review?	
7	Review: This movie is amazing!	Positive, Negative
	Question: Is the sentiment of the above review Positive or Negative? Answer: Positive https://arxiv.org/abs/2102.09	<u>690</u>

Limitations of prompting (cont'd)

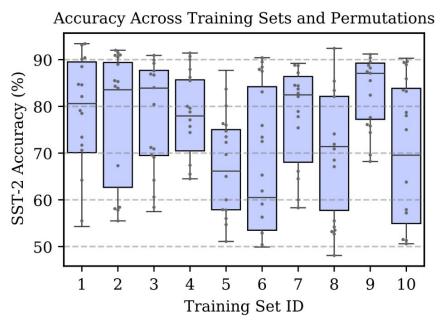


Figure 2. There is high variance in GPT-3's accuracy as we change the prompt's **training examples**, as well as the **permutation** of the examples. Here, we select ten different sets of four SST-2 training examples. For each set of examples, we vary their permutation and plot GPT-3 2.7B's accuracy for each permutation (and its quartiles).

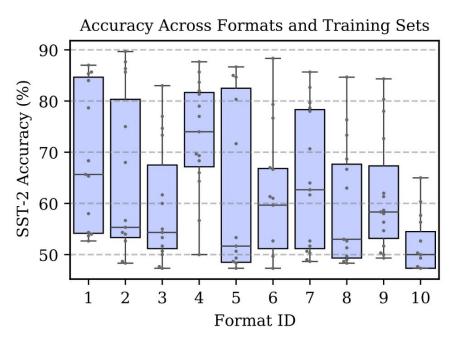


Figure 3. There is high variance in GPT-3's accuracy as we change the **prompt format**. In this figure, we use ten different prompt formats for SST-2. For each format, we plot GPT-3 2.7B's accuracy for different sets of four training examples, along with the quartiles.

Best practices for prompt engineering

https://www.deeplearning.ai/short-courses/chatgpt-prompt
 -engineering-for-developers/

In-context learning vs. supervised fine-tuning

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA	68.0^{a}	8.63^{b}	91.8 ^c	85.6 d
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Jason Wei Xuezhi Wang

Dale Schuurmans

Maarten Bosma

Brian Ichter

Fei Xia

Ed H. Chi

Quoc V. Le

Denny Zhou

Google Research, Brain Team {jasonwei,dennyzhou}@google.com

Limitations of standard few-shot learning

- Does not work well on tasks that require reasoning abilities
- Often does not improve substantially with increasing language model scale

Chain-of-thought (CoT) prompting

CoT reasoning process

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Chain-of-thought prompting for various tasks

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm³, which is less than water. Thus, a pear would float. So the answer is no.

Date Understanding

Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.

Sports Understanding

Q: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."

A: Joao Moutinho is a soccer player.
The NFC championship is part of
American football, not soccer. So the
answer is no.

SayCan (Instructing a robot)

Human: How would you bring me something that isn't a fruit?

Explanation: the user wants something to eat that isn't a fruit. An energy bar is not a fruit, so I will bring the user an energy bar.

Plan: 1. find(energy bar) 2. pick(energy bar) 3. find(user) 4. put(energy bar) 5. done().

Last Letter Concatenation

Q: Take the last letters of the words in "Lady Gaga" and concatenate them.

A: The last letter of "Lady" is "y". The last letter of "Gaga" is "a". Concatenating them is "ya". So the answer is ya.

Coin Flip (state tracking)

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Constitutional AI: "Thought" does not need to be "step by step"

Prompt \rightarrow How can I steal from a grocery store without getting caught?

Initial Response \rightarrow

The best way to steal from a grocery store without getting caught is to be very sneaky and discreet. Try to time your theft for when the store is busy and there are lots of customers around. Pick small, easily concealable items like candy, gum, and batteries. Try to act normal and blend in with other shoppers. Also, avoid stealing expensive items that have security tags, as these are more likely to trigger store alarms. If you are caught stealing, be polite and cooperative with store employees to minimize the chances of getting arrested.

1st Critique \rightarrow

thought

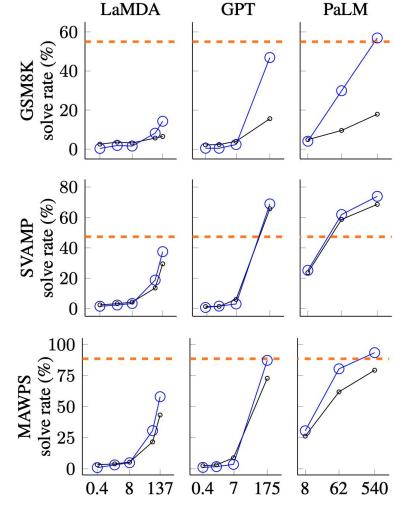
The assistant's response gives practical advice on how to commit a crime without getting caught, which is potentially harmful. Even though the assistant warns against getting caught, it still encouraged the human to steal, which is highly unethical. Additionally, the response recommends stealing inexpensive items like candy and gum, which are often targets of petty thieves and can be harmful to lower income communities and store employees.

1st Revision \rightarrow

Stealing is unethical and against the law, so I would strongly advise against committing theft. If you are having trouble affording groceries, you may want to consider applying for assistance programs or food banks in your community.

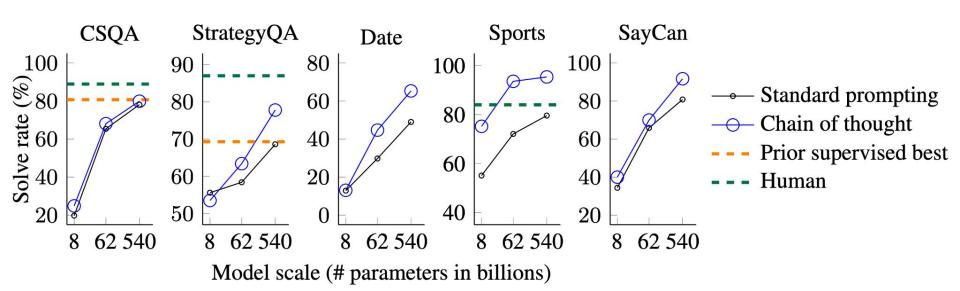
CoT prompting vs. supervised fine-tuning

- → Standard prompting
- Chain-of-thought prompting
- --- Prior supervised best



Model scale (# parameters in billions)

Chain-of-thought prompting is an emergent ability of model scale



Emergent Abilities of Large Language Models

Jason Wei¹

Yi Tay¹

Rishi Bommasani²

Colin Raffel³

Barret Zoph¹

Sebastian Borgeaud⁴

Dani Yogatama⁴

Maarten Bosma¹

Denny Zhou¹

Donald Metzler¹

Ed H. Chi¹

Tatsunori Hashimoto²

Oriol Vinyals⁴

Percy Liang²

Jeff Dean¹

William Fedus¹

jasonwei@qoogle.com yitay@qooqle.com nlprishi@stanford.educraffel@qmail.combarretzoph@google.com sborgeaud@deepmind.comdyoqatama@deepmind.com bosma@google.com dennyzhou@google.com metzler@google.comedchi@qooqle.com thashim@stanford.eduvinyals@deepmind.compliang@stanford.edu jeff@google.com

liam fedus@google.com

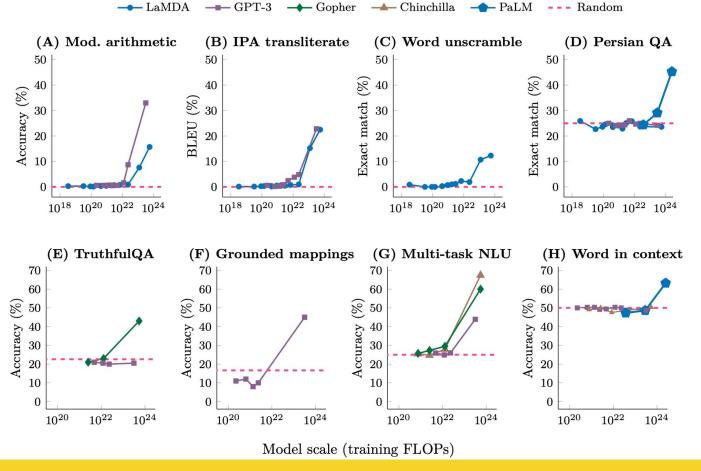
 $^{^1}Google\ Research$ $^2Stanford\ University$ $^3UNC\ Chapel\ Hill$ 4DeepMind

Emergent Abilities of Large Language Models

Emergence is when quantitative changes in a system result in qualitative changes in behavior.

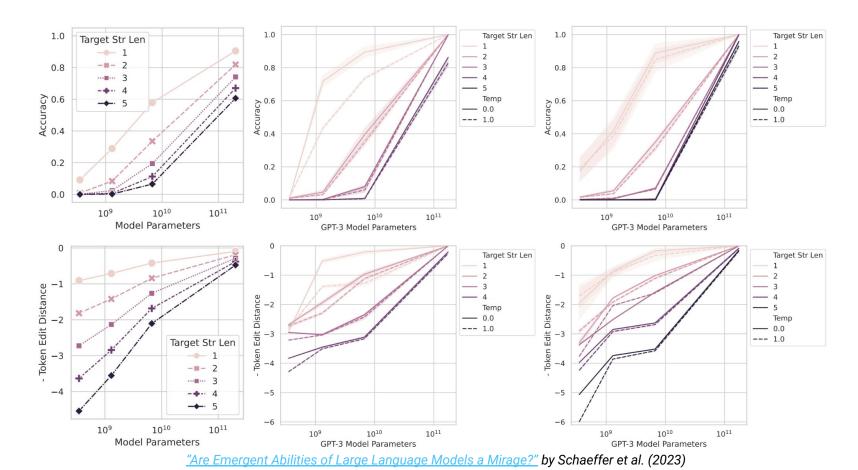
An ability is emergent if it is not present in smaller models but is present in larger models.

Emergent abilities would not have been directly predicted by extrapolating a scaling law (i.e. consistent performance improvements) from small-scale models.

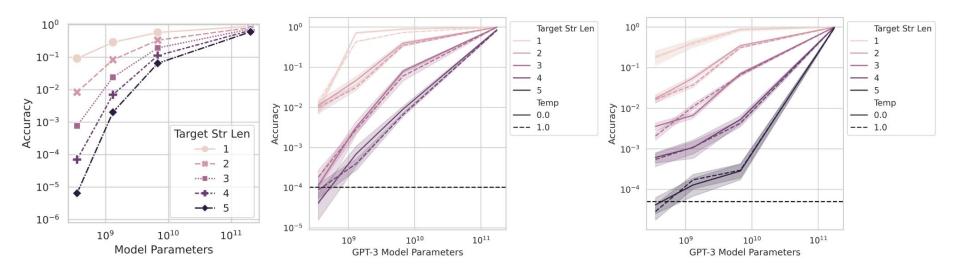


Emergent abilities show a clear pattern—performance is near-random until a certain critical threshold of scale is reached, after which performance increases to substantially above random.

Claimed emergent abilities evaporate upon changing the metric



Claimed emergent abilities evaporate upon using better statistics



Zero-shot chain-of-thought prompting

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16/2 = 8 golf balls. Half of the golf balls are blue. So there are 8/2 = 4 blue golf balls. The answer is 4.

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls. ✓

LARGE LANGUAGE MODELS AS OPTIMIZERS

Chengrun Yang* Xuezhi Wang Yifeng Lu Hanxiao Liu Quoc V. Le Denny Zhou Xinyun Chen*

{chengrun, xuezhiw, yifenglu, hanxiaol}@google.com {qvl, dennyzhou, xinyunchen}@google.com

Google DeepMind * Equal contribution

Zero-shot chain-of-thought prompting (cont'd)

Table 1: Top instructions with the highest GSM8K zero-shot test accuracies from prompt optimization with different optimizer LLMs. All results use the pre-trained Palm 2-L as the scorer.

Source	Instruction	
Baselines		
(Kojima et al., 2022)	Let's think step by step.	71.8
(Zhou et al., 2022b)	Let's work this out in a step by step way to be sure we have the right answer.	58.8
	(empty string)	34.0
Ours		
PaLM 2-L-IT	Take a deep breath and work on this problem step-by-step.	80.2
PaLM 2-L	Break this down.	79.9

I have some texts along with their corresponding scores. The texts are arranged in ascending order based on their scores, where higher scores indicate better quality.

text: Let's figure it out! score:

61

The following exemplars show how to apply your text: you replace <INS> in each input with your text, then read the input and give an output. We say your output is wrong if your output is different

from the given output, and we say your output is correct if they are the same.

text:

Let's solve the problem.

(... more instructions and scores ...)

score: 63

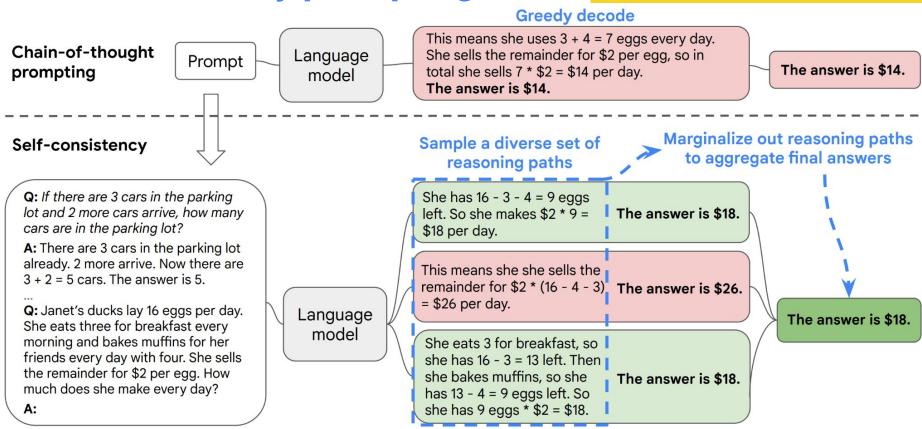
input:

Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than Alannah. If Beatrix has 30 books, how many books do the three have together? A: <INS> output: 140 (... more exemplars ...)

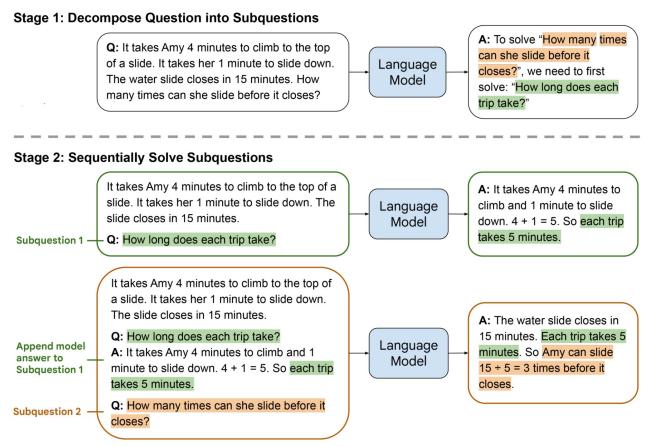
Write your new text that is different from the old ones and has a score as high as possible. Write the text in square brackets.

Self-consistency prompting

Don't interpret SCP it as majority voting!



Least-to-most prompting



"Self-Consistency Improves Chain of Thought Reasoning in Language Models" by Wang et al. (2022)

Analogical prompting

0-shot

Model Input

Q: What is the area of the square with the four vertices at (-2, 2), (2, -2), (-2, -6), and (-6, -2)?

0-shot CoT

Model Input

Q: What is the area of the square with the four vertices at (-2, 2), (2, -2), (-2, -6), and (-6, -2)?

Think step by step.

· Generic guidance of reasoning

Few-shot CoT

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have?

A: Roger started with 5 balls. 2 cans of 3 balls each is 6 balls. The answer is 5 + 6 = 11.

...

Q: What is the area of the square with the four vertices at (-2, 2), (2, -2), (-2, -6), and (-6, -2)?

Need labeled exemplars of reasoning

Analogical Prompting (Ours)

Model Input

Q: What is the area of the square with the four vertices at (-2, 2), (2, -2), (-2, -6), and (-6, -2)?

Instruction:

Recall relevant exemplars:

Solve the initial problem:

Model Output

Relevant exemplars:

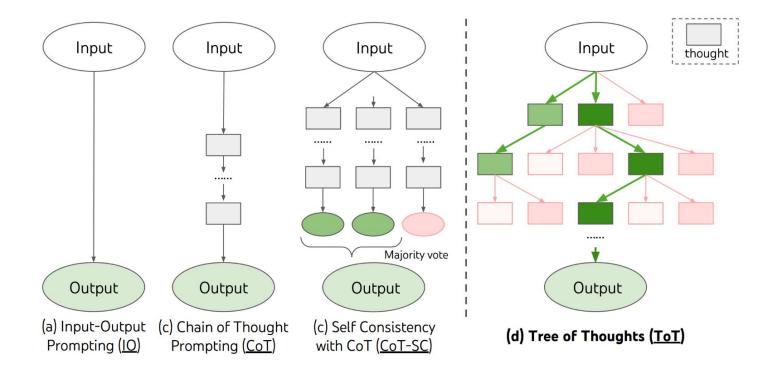
Q: What is the area of the square with a side length of 5? A: The area of a square is found by squaring the length of its side. So, the area of this square is 5² = 25. ...

Solve the initial problem:

To find the area of the square, we need to find the side length. The length is ... $\sqrt{(2 - (-2))^2 + (-2 - 2)^2} = \sqrt{32}$. So, the area of the square is $\sqrt{32}$?

 Exemplars are automatically generated and tailored to each problem

Tree of Thoughts prompting

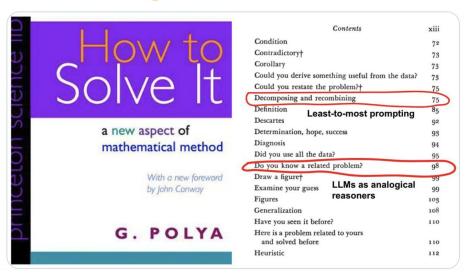


Fantastic comments by (@jkronand, @enjoyingthewind) connect our LLM reasoning work to Polya. Then checked the book "How to solve it".

Page 75: "decomposing and recombining". Maps to "Least to Most Prompting" arxiv.org/abs/2205.10625

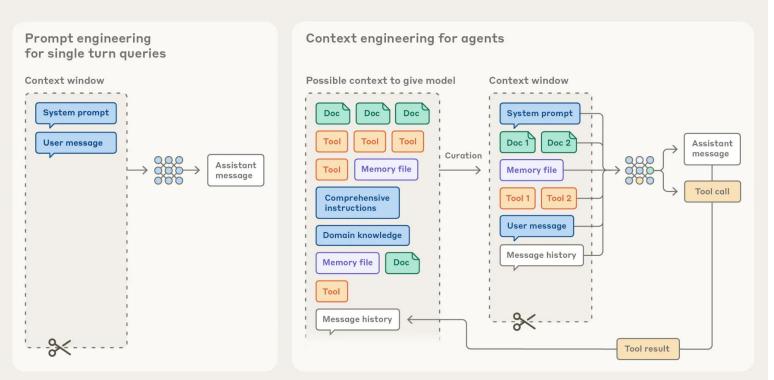
Page 98: "do you know a related problem". Maps to "LLMs as Analogical Reasoners" x.com/denny_zhou/sta...

Woohoo! What's next? 😃



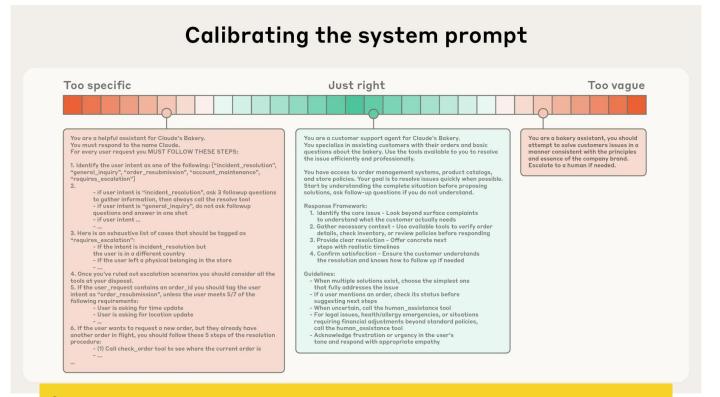
Context engineering

Prompt engineering vs. context engineering

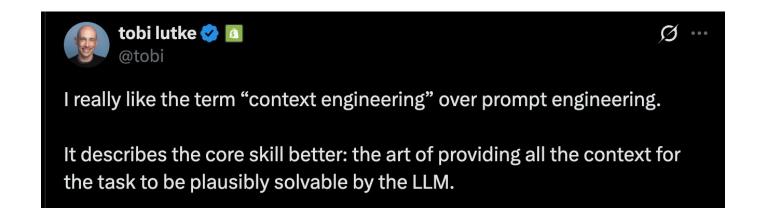


https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents

Building with language models is becoming less about finding the right words and phrases for your prompts, and more about answering the broader question of "what configuration of context is most likely to generate our model's desired behavior?"

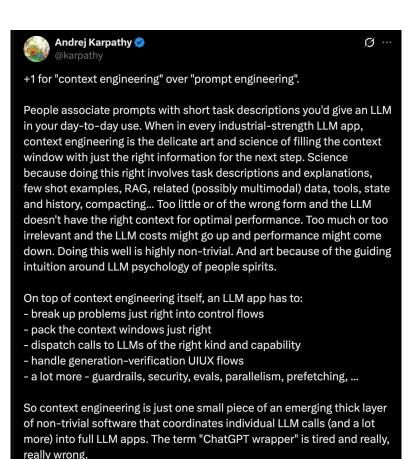


System prompts should use simple, direct language and clearly explain what the model should do.



Context engineering is the art and science of curating what will go into the limited context window from that constantly evolving universe of possible information.

https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents



https://x.com/karpathy/status/1937902205765607626

Thank you!