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Transformer decoder
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Transformer decoder (unmasked)
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Transformer decoder
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Transformer decoder (unmasked)
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Transformer decoder
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Transformer decoder
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Transformer decoder (masked)
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Transformer decoder: training
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Transformer decoder: inference
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Autoregressive decoding

e https://research.qgooqle/blog/looking-back-at-speculative-d
ecoding/
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Temperature

P(yi|x) =

where:
e P(y;|x) is the probability of token y; given the input x
e z;isthe logit (raw score before softmax) for token y;

e T'isthe temperature (where T’ = 1 is the default, and T' < 1 reduces

randomness while T' > 1 increases randomness)

e The summation in the denominator is over all possible tokens 7



Temperature (cont'd)
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“The cat is” — [sleeping, running, eating, jumping]
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Temperature

e Low temperature (T <1, e.g., 0.2-0.5):
o more deterministic and predictable, favoring high-probability predictions
o more factual but less diverse, resulting in repetitive or conservative
responses
o useful for tasks requiring precise answers (e.g., factual QA)
e High temperature (T > 1, e.g., 1.2-2.0):
o more random and diverse, making token probabilities more uniform
o increases creativity but may also result in less coherent or more
unpredictable text
o useful for tasks like storytelling or brainstorming
e T =1 (default setting):
o keeps the original probability distribution unchanged.
o provides a balance between randomness and determinism.



Greedy decoding
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Beam search

Maintains a set of b candidate
sequences at each step instead of
just keeping the single best one.
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Pruning: maintains a set

of b candidate
blue UL sequences at each step
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Pure sampling

Samples from the entire probability
distribution over the next token, with
each token sampled according to its

own probability, not uniformly
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Top-k sampling

Limits the vocabulary to the k
most probable words at each
step before applying softmax

top_k=3
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Top-p (nucleus) sampling Selects the highest probability

tokens whose cumulative
probability mass exceeds the
pre-chosen threshold p
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Constrained decoding |generates sequences that

must satisfy certain
predefined conditions or

constraints
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Speculative decoding

e https://research.qgooqle/blog/looking-back-at-speculative-d
ecoding/



https://research.google/blog/looking-back-at-speculative-decoding/
https://research.google/blog/looking-back-at-speculative-decoding/

Observation 1: Some tokens are easier to generate
than others

Not all tokens are alike: some are harder and some are easier to generate. Consider the following text:
What is the square root of 7? The square root of 7is 2. 646.

Generating the emphasized token “ 7” is relatively easy; for example, we can notice that the previous tokens “square root of”
happened before, and just copy the following token. Generating the tokens “2. 646" is harder; the model would need to either
compute or remember the answer.

This observation suggests that the large models are better due to better performance in difficult cases (e.g. “2. 646”), but that in
the numerous easy cases (e.g., “7”), small models might provide reasonable approximations for the large models.



Observation 2: The bottleneck for LLM inference is
usually memory

Machine learning hardware varieties, TPUs and GPUs, are highly parallel machines, usually capable of hundreds of trillions of
operations per second, while their memory bandwidth is usually around just trillions of bytes per second — a couple of orders of
magnitude lower. This means that when using modern hardware, we can usually perform hundreds of operations for every byte read
from memory.

In contrast, the Transformer architecture that underlies modern LLMs usually performs only a few operations for every byte read
during inference, meaning that there are ample spare computational resources available when generating outputs from LLMs on
modern hardware.

Hardware can do | Transformers need

operations/byte read operations/byte read

~100s-1000s | ~10
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Speculative execution

Based on the expectation that additional parallel computational resources are available while tokens are computed serially, our
method aims to increase concurrency by computing several tokens in parallel. The approach is inspired by speculative execution, an
optimization technique whereby a task is performed before or in parallel with the process of verifying whether it is actually needed,
resulting in increased concurrency. A well-known example of speculative execution is branch prediction in modern pipelined CPUs.

For speculative execution to be effective, we need an efficient mechanism that can suggest tasks to execute that are likely to be
needed. More generally, consider this abstract setting for speculative execution, with the assumption that f(X) and g(Y) are lengthy
operations:

Y = f(X)

Z=g9(Y)

The slow function f(X) computes Y, which is the input to the slow function g(Y). In the setting above, f(X) and g(Y) are the same
function. Without speculative execution, we’d need to evaluate these serially. Speculative execution suggests that given any fast
approximation function f*(X), we can evaluate the first slow operation f(X) in parallel to evaluating g(f*(X)). Once f(X) finishes and we
obtain the correct value of Y, we can check if the output of the fast approximation f*(X) was Y as well, in which case we managed to
increase parallelization. If *(X) output a different value, we can simply discard the computation of g(f*(X)) and revert to calculating
g(Y) as in the serial case. The more effective f*(X), i.e., the higher the likelihood that it outputs the same value as f(X), the more likely
it is to increase concurrency. We are guaranteed identical outputs either way.



Speculative decoding

LLMs don’t produce a single next token, but rather a probability distribution from which we sample the next token (for example,
following the text “The most well known movie director is”, an LLM might produce the token “Steven” with 70% chance and the
token “Quentin” with 30% chance). This means that a direct application of speculative execution to generate outputs from LLMs is
very inefficient. Speculative decoding makes use of speculative sampling to overcome this issue. With it, we are guaranteed that in
spite of the lower cost, the generated samples come from exactly the same probability distribution as those produced by naive
decoding. Note that in the special case of greedy decoding, where we always sample the single most probable token, speculative
execution can be applied effectively to LLM inference, as was shown in a precursor to our work.

Speculative decoding is the application of speculative sampling to inference from autoregressive models, like transformers. In this
case, both f(X) and g(Y) would be the same function, taking as input a sequence, and outputting a distribution for the sequence
extended by one token. Speculative decoding thus allows us to efficiently calculate a token and the tokens following it, in parallel,
while maintaining an identical distribution (note that speculative decoding can parallelize the generation of more than two tokens,
see the paper).

All that remains in order to apply speculative decoding is a fast approximation of the decoding function. Observation 1 above
suggests that a small model might do well on many of the easier tokens. Indeed, in the paper we showed that using existing off-the-
shelf smaller models or simple heuristics works well in practice. For example, when applying speculative decoding to accelerate an
11B parameter T5-XXL model for a translation task, and using a smaller 60M parameter T5-small as the guessing mechanism, we get
~3x improvement in speed.



Speculative decoding

e https://research.qgooqle/blog/looking-back-at-speculative-d
ecoding/
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Thank you!



