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Logistics

● Final Project proposal due 10/7
● Homework 1 due 10/14
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Attention (cont’d)
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Attention matrix

The time complexity of 
self-attention is quadratic in 

the input length O(n2)a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

q1



Attention (cont’d)

the

K

V

Q

students opened their

Q = X · WQ 

K = X · WK

V = X · WV

linear 
projections



Attention (cont’d)

the

K

V

Q

students opened their

Q = X · WQ 

K = X · WK

V = X · WV

linear 
projections



Transformer decoder

Feed forward

Multihead Attention
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Transformer decoder (unmasked)
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Transformer decoder (masked)



Transformer decoder: training
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Transformer decoder: inference

Transformer decoder

dmodel

dmodel

the students opened their

✘ ✘ ✘



Autoregressive decoding

● https://research.google/blog/looking-back-at-speculative-d
ecoding/

https://research.google/blog/looking-back-at-speculative-decoding/
https://research.google/blog/looking-back-at-speculative-decoding/


Temperature



Temperature (cont’d)

flatter distribution 
(more randomness)

peaked distribution 
(more deterministic)



“The cat is” → [sleeping, running, eating, jumping]

default T = 1.0
→ balanced

T = 2.0
→ flatter distribution 
(more randomness)

T = 0.5
→ peaked distribution 
(more deterministic)



Temperature

● Low temperature (T < 1, e.g., 0.2-0.5):
○ more deterministic and predictable, favoring high-probability predictions
○ more factual but less diverse, resulting in repetitive or conservative 

responses
○ useful for tasks requiring precise answers (e.g., factual QA)

● High temperature (T > 1, e.g., 1.2-2.0):
○ more random and diverse, making token probabilities more uniform
○ increases creativity but may also result in less coherent or more 

unpredictable text
○ useful for tasks like storytelling or brainstorming

● T = 1 (default setting):
○ keeps the original probability distribution unchanged.
○ provides a balance between randomness and determinism.



Greedy decoding
Selects the token with the 

highest probability at each step
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Beam search
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sequences at each step instead of 
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Pure sampling
Samples from the entire probability 

distribution over the next token, with 
each token sampled according to its 

own probability, not uniformly
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Top-k sampling
Limits the vocabulary to the k 
most probable words at each 
step before applying softmax
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Top-p (nucleus) sampling  Selects the highest probability 
tokens whose cumulative 

probability mass exceeds the 
pre-chosen threshold p
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Constrained decoding generates sequences that 
must satisfy certain 

predefined conditions or 
constraints
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Speculative decoding

● https://research.google/blog/looking-back-at-speculative-d
ecoding/

https://research.google/blog/looking-back-at-speculative-decoding/
https://research.google/blog/looking-back-at-speculative-decoding/


Observation 1: Some tokens are easier to generate 
than others



Observation 2: The bottleneck for LLM inference is 
usually memory
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Speculative execution



Speculative decoding



Speculative decoding
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Thank you!


