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™ Dan Hendrycks

A few hours ago

The term “AGI” is currently a vague, moving goalpost.

To ground the discussion, we propose a comprehensive, testable
definition of AGI.

Using it, we can quantify progress:

GPT-4 (2023) was 27% of the way to AGI. GPT-5 (2025) is 58%.

The lack of a concrete definition for Artificial General Intelligence (AGI) obscures
the gap between today’s specialized Al and human-level cognition. This paper
introduces a quantifiable framework to address this, defining AGI as matching the
cognitive versatility and proficiency of a well-educated adult. To operationalize
this, we ground our methodology in Cattell-Horn-Carroll theory, the most em-
pirically validated model of human cognition. The framework dissects general
intelligence into ten core cognitive domains—including reasoning, memory, and
perception—and adapts established human psychometric batteries to evaluate Al
systems. Application of this framework reveals a highly “jagged” cognitive profile
in contemporary models. While proficient in knowledge-intensive domains, current
Al systems have critical deficits in foundational cognitive machinery, particularly
long-term memory storage. The resulting AGI scores (e.g., GPT-4 at 27%, GPT-5
at 58%) concretely quantify both rapid progress and the substantial gap remaining
before AGI.
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Recursive Language Models

RLM with a REPL environment:

Language
Model

[ context

Root LM

(depth=0)

# Gi ’ -LLM
half = len(context)//2
first_half = "\n n(con

Secondinalfl= =\ olncconte s ) lIm_query(...)

Recursive LM

Call
¢ (depth=1)

You are trying to answer

{query}. Interact with the

REPL environment, which
contains the context...

—
eryCquery)
Root LM Output: 1)
execute_code(...) Out[1]

Best single match: Ally of Justice Catastor

—
Why it fits (clue - evidence from the provided documents)

REPL Out[1]: | —1

< - Monster card with printed Level below 8
Best single match...

-_

)+window)

Root LM Output:

chunki8 = context[:
1le

, illegal_excerpt o

FINAL(The answer
ST

Out[N]

Root LM Context Window



https://alexzhang13.github.io/blog/2025/rlm/
https://alexzhang13.github.io/blog/2025/rlm/
https://alexzhang13.github.io/blog/2025/rlm/
https://alexzhang13.github.io/blog/2025/rlm/

Recursive Language Models (cont'd)

Input: a long report of 10,000 words about a company’s 5-year strategy
Query: What risks did the report identify in year 3?

Al: High-level scan / peek at the report’s table of contents

# find the header line number
hdr=$( -inE '~(table of contents|contents|toc)\s*x$' doc.txt | -1 | ~d:

# print the next 100 lines that look like TOC entries
-n +"$hdr" doc.txt n 100 | —-nE ' (M\s*k\d+(\.\d+)*\s+.+) | (*\sk.+\s+\.{2, }\sk\d+\s*$) '

Select sub-chunks

Based on that peek, it might decide: “Chapter 4 (pages 40-60) and Chapter 6 (pages
90-110) are likely to mention Year 3 risks.”

Recursive call on chunks It then issues sub-queries:

“From pages 40-60, what risks are mentioned for year 3?”

“From pages 90-110, what risks are mentioned for year 3?”

Aggregate / refine

“In year 3 the report warned of supply chain disruption, regulatory changes, and
declining demand in Asia.”




Recursive Language Models (cont'd)
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Recursive Language Models (cont’d)
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Recursive Language Models (
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Training-Free Group Relative Policy Optimization
Youtu-Agent Team*

Recent advances in Large Language Model (LLM) agents have demonstrated their promising general
capabilities. However, their performance in specialized real-world domains often degrades due
to challenges in effectively integrating external tools and specific prompting strategies. While
methods like agentic reinforcement learning have been proposed to address this, they typically
rely on costly parameter updates, for example, through a process that uses Supervised Fine-Tuning
(SFT) followed by a Reinforcement Learning (RL) phase with Group Relative Policy Optimization
(GRPO) to alter the output distribution. However, we argue that LLMs can achieve a similar effect
on the output distribution by learning experiential knowledge as a token prior, which is a far more
lightweight approach that not only addresses practical data scarcity but also avoids the common issue
of overfitting. To this end, we propose Training-Free Group Relative Policy Optimization (Training-
Free GRPO), a cost-effective solution that enhances LLM agent performance without any parameter
updates. Our method leverages the group relative semantic advantage instead of numerical ones
within each group of rollouts, iteratively distilling high-quality experiential knowledge during
multi-epoch learning on a minimal ground-truth data. Such knowledge serves as the learned token
prior, which is seamlessly integrated during LLM API calls to guide model behavior. Experiments
on mathematical reasoning and web searching tasks demonstrate that Training-Free GRPO, when
applied to DeepSeek-V3.1-Terminus, significantly improves out-of-domain performance. With just a
few dozen training samples, Training-Free GRPO outperforms fine-tuned small LLMs with marginal
training data and cost.

" Date: October 9, 2025
Bl Correspondence: tristanli@tencent.com
©) Code: https://github. com/TencentCloudADP/youtu-agent/tree/training_free_GRPO
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Training-free GRPO rollouts

(a) Vanilla GRPO Update
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System 1 & System 2

Which is better?

INSTINCTIVE  DELIBERATIVE
EMOTIONAL LOGICAL

ChatGPT
image



From System 1to System 2 RL vs. SFT: RL allows the model to
encode the subtle nuances of

human preferences
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Training reasoning models via reinforcement learning

Similar to how a human may think for a long time before responding to a difficult
question, ol uses a chain of thought when attempting to solve a problem. Through
reinforcement learning, ol learns to hone its chain of thought and refine the
strategies it uses. It learns to recognize and correct its mistakes. It learns to break
down tricky steps into simpler ones. It learns to try a different approach when the
current one isn’t working. This process dramatically improves the model’s ability to

reason.
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DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-Al

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-
vised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAl-01-1217 on reasoning tasks. To support the

research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1TER 7R QAR 14AR 279R 7NR) Aictillad fvarty NannCanl P1 hhacad A Hiarars amvAdA T 1lawrwans



Reinforcement Learning from Verifiable Rewards
(RLVR)

The reward is the source of the training signal, which decides the optimization direction of RL.
To train DeepSeek-R1-Zero, we adopt a rule-based reward system that mainly consists of two
types of rewards:

® Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

* Format rewards: In addition to the accuracy reward model, we employ a format reward
model that enforces the model to put its thinking process between ‘<think>" and “</think>’
tags.



Guided Chain-of-Thought (CoT) template

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and

<answer> </answer> tags, respectively, i.e. ,@ reasoning process here <@\
<answer> answer here </answer>. User: prompt. Assistant:




Group Relative Policy Optimization (GRPO) (cont'd)
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Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
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An interesting “aha moment” of DeepSeek-R1-Zero

Question: If a > 1, then the sum of the real solutions of ya — va+x = x is equal to

Response: <think>
To solve the equation va — Va + x = x, let’s start by squaring both - - -

2
( Cl—‘VCl+X) =X2 == a—'Va+x=x2.

Rearrange to isolate the inner square root term:
(a-x?)? =a+x = ®-2a’+(x*? =a+x = x*-2ax’>-x+(a*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va—+a+x=x

First, let’s square both sides:
a-Va+x=x> = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2




o1 performance smoothly improves with both
train-time and test-time compute

o1 AIME accuracy o1 AIME accuracy
during training at test time
100 ~ 100 -
80 A 80 A
[}
> b >
o o
£ 60 - °« ° 5 607 .
@) L4 @)
S} ) L4 ]
S - .
® ] ®
@ 40 o @ 40 A o
(] (3]
o ® o
[ J
20 - 20 ®
train-time compute (log scale) test-time compute (log scale)

https://openai.com/index/learning-to-reason-with-llms/
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Test-time scaling

e Uses extra test-time compute to improve performance



Discussion: pros and cons of test-time scaling



Test-time scaling methods

e Parallel (repeated sampling)

©)
@)
©)

multiple solution attempts (run independently)
chooses the most frequent or the best response
Brown et al. (2024); Irvine et al. (2023); Levi (2024)

e Sequential

O

later computations depend on earlier ones (e.g., a long
reasoning trace)

allows it to refine each attempt based on previous outcomes
Muennighoff et al.(2025); Snell et al. (2024); Hou et al.

(2025); Lee et al. (2025)
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Large Language Monkeys: Scaling Inference Compute
with Repeated Sampling
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Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

4 LLM ) G =;_ - \I —) 4 Verifier )

: SR (e.g. unit tests, proof
Brobion i PSR - checkers, majority voting)
a number from | ==—)p> —p- | x=initnpur) = | — 7 - x = int(input()) ...
stdnand... | | @ Jelmywp | 4 O —T======
AT b
J - | importrequests.. | s \ )

Problem 2 (precision): Can we identify a correct

Problem 1 (coverage): Can we generate a correct
solution from the generated samples?

solution?

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many independent candidate
solutions for a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific

verifier (ex. unit tests for code) to select a final answer from the generated samples.



Coverage increases as we scale the number of samples
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Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one generated sample)
increases as we scale the number of samples. Notably, using repeated sampling, we are able to increase the solve rate
of an open-source method from 15.9% to 56% on SWE-bench Lite.



Scaling inference time compute via repeated
sampling leads to consistent coverage gains
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Figure 3: Scaling inference time compute via repeated sampling leads to consistent coverage gains across a variety of
model sizes (70M-70B), families (Llama, Gemma and Pythia) and levels of post-training (Base and Instruct models).



API cost

Model (jtots(:rrll);: Number of Issues Total cost Relative
(USD) attempts solved (%) (USD)  total cost
DeepSeek-Coder-V2-Instruct 0.0072 5 29.62 10.8 1x
GPT-40 0.13 1 24.00 39 3.6x
Claude 3.5 Sonnet 0.17 1 26.70 51 4.7x

Table 1: Comparing API cost (in US dollars) and performance for various models on the SWE-bench Lite dataset
using the Moatless Tools agent framework. When sampled more, the open-source DeepSeek-Coder-V2-Instruct model
can achieve the same issue solve-rate as closed-source frontier models for under a third of the price.



s1: Simple test-time scaling
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s1

We seek the simplest approach to achieve test-time scaling and strong
reasoning performance

e First, we curate a small dataset s1K of 1,000 questions paired with
reasoning traces relying on three criteria we validate through
ablations: difficulty, diversity, and quality.

e Second, we develop budget forcing to control test-time compute by
forcefully terminating the model’s thinking process or lengthening it by
appending “Wait” multiple times to the model's generation when it
tries to end. This can lead the model to double check its answer, often

fixing incorrect reasoning steps.



s1K is a dataset of 1,000 high-quality, diverse, and
difficult questions with reasoning traces.
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Test-time scaling with s1-32B

Mathematical Competition PhD-Level
Problem Solving Math Science Questions
(MATH500) (AIME24) (GPQA Diamond)
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Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B
on reasoning-intensive tasks and vary test-time compute.



s1-32B is on the sample-efficiency frontier
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Budget
forcing

(How many r in raspberry?

Question)

word "raspberry" ...
* First letter: 'r' - Thisis an 'r', count = 1.

* Sixth letter: 'e' - Not an 'r', count remains

* Eighth letter: 'y' - Not an 'r', count remain
The number of 'r's in "raspberry" is 2.

in raspberry?" ... *r-a-s-p-b-e-r-r-y
Qecond 'r' ... * Third 'r' ... Count =3 ...

ﬁet's break down the process of counting the letter 'r' in the\

* Second letter; 'a' - Not an 'r', count remains 1 ...

* Seventh letter; 'r' - Thisisan 'r', count = 2.

Wait, let's re-read the question carefully. It asks "How many r

1.

S2..

P o [ o
Reasoning trace /

the word. Final Answer: The final answer is

3 Response

Q/Iy initial answer of 2 was incorrect due to a quick reading (5




Budget forcing shows clear scaling trends and
extrapolates to some extent
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(a) Sequential scaling via budget forcing



Parallel scaling via majority voting
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s1-32B is a strong
open reasoning model

AIME MATH GPQA
Model #eX- 2024 500 Diamond
API only

ol-preview N.A. 44.6 85.5 73.3
ol-mini N.A. 70.0 90.0 60.0
ol N.A. 74.4 94.8 773
Gemini 2.0

Flash Think. N.A. 60.0 N.A. N.A.

Open Weights

Qwen2.5-

30B-Instruct N.A. 26.7 84.0 49.0
QwQ-32B N.A. 50.0 90.6 54.5
rl >800K 79.8 97.3 71.5
r1-distill 800K 72.6 94.3 62.1

Open Weights and Open Data

Sky-T1 17K 43.3 82.4 56.8
Bespoke-32B 17K 63.3 93.0 58.1
s1 w/o BF 1K 50.0 92.6 56.6
s1-32B 1K 56.7 93.0 59.6




s1K data ablations

AIME MATH GPQA

Model 2024 500 Diamond

1Korandom 36.7 90.6 52.0
[-26.7%, -3.3%]  [-4.8%,0.0%] [-12.6%,2.5%]

1K-diverse 26.7 91.2 54.6
[-40.0%, -10.0%]  [-4.0%,02%]  [-10.1%, 5.1%]

IK-longest 33.3 90.4 59.6
[-36.7%, 0.0%]  [-5.0%,-02%] [-5.1%, 10.1%]

5OK-full 53.3 92.8 58.1
[-13.3%,20.0%]  [-2.6%,22%]  [-6.6%, 8.6%]

s1K 50.0 93.0 57.6




Ablations on methods to scale test-time compute

Method Control Scaling Performance |.A]|
BF 100% 15 56.7 5
TCC 40% -24 40.0 5
TCC+ BF | 100% 13 40.0 3
SCC 60% 3 36.7 5
SCC+BF | 100% 6 36.7 5
CCC 50% 25 36.7 2
RS 100% -35 40.0 5




Budget forcing extrapolation ablations

AIME MATH GPQA

Model 2024 500  Diamond
No extrapolation 50.0 93.0 57.6
2x without string 50.0 90.2 35.1
2x “Alternatively” | 50.0 92.2 59.6
2x “Hmm” 50.0 93.0 59.6
2x “Wait” 53.3 93.0 59.6




Rejection sampling
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Augmenting s1 with REBASE (process reward model)
60

s 1

50 -_== -0

g =@ : REBASE

S5 40! \ =@ = Majority

O \ Sequential

= 30 ® ® scaling
2048 8192 32768 131072

Average thinking time (tokens)



Why does supervised fine-tuning on just 1,000
samples lead to such performance gains?

e We hypothesize that the model is already exposed to large
amounts of reasoning data during pretraining which spans
trillions of tokens.

e Thus, the ability to perform reasoning is already present in
our model.

e Our sample-efficient fine-tuning stage just activates it and
we scale it further at test time with budget forcing.



Superficial Alignment Hypothesis

e LIMA: Less is more for alignment (Zhou et al., 2023)
o 1,000 examples can be sufficient to align a model to
adhere to user preferences



https://arxiv.org/abs/2305.11206
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Superficial Alignment Hypothesis

e LIMA: Less is more for alignment (Zhou et al., 2023)
o 1,000 examples can be sufficient

e LIMO: even competition-level complex reasoning abilities can be
effectively elicited through minimal but curated training samples

e LIMO: a promising technical pathway toward AGI - any sophisticated
reasoning capability, no matter how complex, could potentially be
activated with minimal samples given two key conditions:

o (1) sufficient domain knowledge embedded during pre-training
o (2) optimal cognitive reasoning chains for activation


https://arxiv.org/abs/2305.11206

Categorizing the reasoning chains into five

How well the reasoning steps were organized, whether important logical
transitions were properly explained, and if the solution included
self-verification steps

e L5: excellent organization with clear, well-explained steps and
thorough self-verification

e L4: well-structured but perhaps with slightly less rigorous checking

e L3: decent organization but sometimes skipped over explaining crucial
logical leaps

e L2: often provided abbreviated reasoning without much explanation

e L1:justlisted basic steps with minimal elaboration and rarely included
any verification



Statistical analysis of different quality levels

Data Quality Level Avg. Tokens per Avg. Lines per Top 10 Frequently Occurring Keywords (in order)

response response

Level 1 230 9.21 since, however, number, let, thus, which, get, two, triangle,
theta

Level 2 444 88 50.68 number, need, times, which, find, list, thus, since, triangle,
sum

Level 3 4956.11 375.60 perhaps, alternatively, consider, number, wait, which,
sides, need, equal, seems

Level 4 4726.97 354.87 wait, which, number, perhaps, therefore, let, since,
maybe, sides, two

Level 5 5290.26 239.29 wait, therefore, which, number, since, lets, two, sides, let,

maybe




Comparison of models trained on reasoning chains of
different quality levels

-o- AIME24 -o- MATH500
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LIMO achieves substantial improvement over
NuminaMath with fewer samples

100- @ 1% | @

100,000 samples 817 samples
197
57.1%
50+
_—_>
o 778% 4
6.5 %
0-

NuminaMath LIMO (Ours)

completely same backbone
1% data — 778% gain on AIME24 (pass@1)




... While excelling across diverse mathematical and
multi-discipline benchmarks

=@ NuminaMath @ In-Domain
= LIMO (Ours) @ Out-of-Domain

AIME24

CHMath

superior performance across
10 benchmarks




LIMO achieves superior performance despite using
significantly fewer training examples

OpenAl-ol Qwen2.5-32B QwQ-32B- OpenThoughts NuminaMath LIMO

Datasets preview  -Instruct  preview (114K) (100k)  ours(817)
In Domain
AIME24 44.6 16.5 50.0 50.2 6.5 571
MATH500 85.5 79.4 89.8 80.6 59.2 94.8
AMC23 81.8 64.0 83.6 80.5 40.6 92.0
Out of Domain
OlympiadBench 2.1 45.3 58.5 56.3 36.7 66.8
CHMath 50.0 27.3 68.5 74.1 11.2 75.4
Gaokao 62.1 72.1 80.1 63.2 494 81.0
Kaoyan 51.5 48.2 70.3 54.7 32.7 73.4
GradeSchool 62.8 56.7 63.8 39.0 36.2 76.2
Minerva 47.1 41.2 39.0 41.1 24.6 44.9
GPQA 73.3 48.0 65.1 42.9 25.8 66.7

AVG. 61.1 49.9 66.9 58.3 32.3 72.8




Models trained on different question quality

Accuracy(%)

551

50+

45+
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346

Simple-500 [ Complex-500 [l Advanced-500

AIME24

Accuracy(%)

92

914

90+

89+

88

874

86

85

MATH500

88

Simple-500: 500 simple problems randomly selected problems from MATH levels 1 and 2.
Complex-500: 500 complex problems randomly selected problems from MATH levels 3, 4, and 5.
Advanced-500: 500 advanced problems randomly selected problems from past AIME tests.



Impact of pretrained model choice

Qwen1.5-32B-Chat Qwen2.5-32B-Instruct
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Example model outputs

Problem: Every morning Aya goes for a 9 km long walk and stops at a coffee shop afterwards. When she walks at a constant speed of s kilometers

per hour, the walk takes her 4 hours, including t minutes spent in the coffee shop. When she walks $s+29$ kilometers per hour, the walk takes her 2

hours and 24 minutes, including $t$ minutes spent in the coffee shop. Suppose Aya walks at $s+\\frac{1}{2}$ kilometers per hour. Find the number

of minutes the walk takes her, including the $tS minutes spent in the coffee shop.

©cvenzs.

To solve the problem, we need to
determine the time Aya spends walking
[omitted for brevity...]

The time spent walking is the distance
divided by the speed, so the time spent
walking is (9/s) hours. Therefore, the
equation for the total time is: 9/s + t = 240,
where t is the time spent in the coffee shop
in minutes.

Next, we know that [omitted for

unable to

correct false

brevity...]. The time spent walking is above
9/(s+2) hours. Therefore, the equation for -

the total time is: 9/(s+2) + t = 144.

We now have two equations: / Did not
1.9/s +t =240 cross verify
2.9/(s+2) +t=144 equation 2

[omitted for brevity...]
So, s =3/ 16 km/h. Now we substitute s ,/
=3/ 16 knm/h back into equation (1) to
find t:

9/(3/16) +t=240,48 + t =240,t = 192
[omitted for brevity...]

So, the number of minutes the walk takes
her., including the t minutes spent in the
coffee shop, is 205.

Okay, let's try to figure out this problem step by step.

So, Aya goes for a 9-kilometer walk every morning think with
and then stops at a coffee shop. [omitted for anthropomorphi
brevity...] tone

First, let's parse the problem. Let's denote the
walking [omitted for brevity...]. Our goal is to find
the total time when she walks at s+1/2 km/h. Hmm,
so we need to figure out the values of s and t first.
Let me write down the equations based on the given
information. [omitted for brevity...]

Now we have two equations:

1) 9/s + /60 = 4, 2) 9/(s+2) + /60 = 2.4

We can subtract the second equation from the first to
eliminate [omitted for brevity...]

So the left side becomes: [omitted for brevity...]
Multiply both sides by: [omitted for brevity...]
Now, solving this quadratic equation: [omitted for
brevity...]. So, Aya's original speed is 2.5 km/h.

Now, let's find t [omitted for brevity...]. Wait, let |

me confirm. But wait, the question says [omitted
for brevity...]. Therefore, the answer should be 204
minutes.

But let me just check again to make sure I didn't
make any mistakes in the quadratic equation
solving. Let's verify that s = 2.5 is correct. [omitted
for brevity...]. Thus, the answer should be 204.

detailed
steps in

Lasdasl
alculatiol

o

self-

flocti
reflection

v iy "v. )
Okay, let's see. So Aya goes for a 9-km walk every morning and then stops at a coffee shop. The time
she takes for the walk, including the time in the coffee shop, depends on her walking speed. [omitted

for brevity...]. When she walks a bit faster, at s plus 2 kilometers per hour, the total time is 2 hours
and 24 minutes, which is 2 hours and 24 minutes, so that's 2.4 hours?

/\‘ Wait, 24 minutes is 0.4 hours? Wait, no. Wait, 60 minutes is 1 hour, so 24 minutes is 24/60, which

is 0.4 hours. So 2 hours and 24 minutes is 2.4 hours. [omitted for brevity...]
So, let's set up equations. Let's denote the walking time as T1 when she walks at s km/h, and T2 when
she walks at s+2 km/h. Then, T1 + t = 4 hours, and T2 + t = 2.4 hours. But t is in minutes, so we
need to convert that to hours or convert the total time to minutes. Maybe it's better to keep
everything in hours. So t minutes is /60 hours. [omitted for brevity...]
For the first case: walking time T1 = 9/s hours, then total time T1 + t/60 = 4 hours.
For the second case: walking time T2 = 9/(s+2) hours, then total time T2 + t/60 = 2.4 hours. So now
we have two equations: 1) 9/s + t/60 = 4, 2) 9/(s+2) + t/60 = 2.4
Let me write that as:
9%(1/s - 1/(s+2)) = 1.6. So, 1/s - 1/(s+2) = 1.6/9
Let me compute 1.6 divided by 9. 1.6 divided by 9 is 0.1777... or 16/90, which simplifies to 8/45. So
1.6/9 = 8/45 = 0.1777... So, 1/s - 1/(s+2) = 8/45
Now, let's compute the left side: [omitted for brevity...]. Multiply both sides by 2: [omitted for
brevity...]. Let me write that as a quadratic equation: [omitted for brevity...]. Now, let's solve this
quadratic equation: [omitted for brevity...]. So, s is 2.5 km/h.
Let's verify that. If s is 2.5 km/h, then walking 9 km would take 9/2.5 = 3.6 hour [omitted for
brevity...]

ut let me check again. Maybe I made a mistake in calculations. First, s = 2.5 km/h. Then,
walking time at s is 9/2.5 = 3.6 hours...[omitted for brevity...] Alternatively, we could have
converted everything to minutes from the start. Let's see: First walk: 9/(s) hours + t minutes = 4
hours. 4 hours is 240 minutes. [omitted for brevity...] I think that's solid. So the answer is 204.




Thank you!



