Parameter-efficient fine-tuning (PEFT)

CS 4804: Introduction to Al

Fall 2025

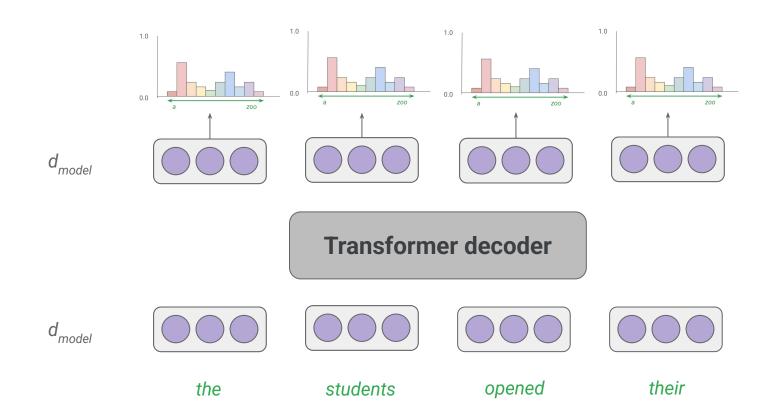
https://tuvllms.github.io/ai-fall-2025/

Tu Vu

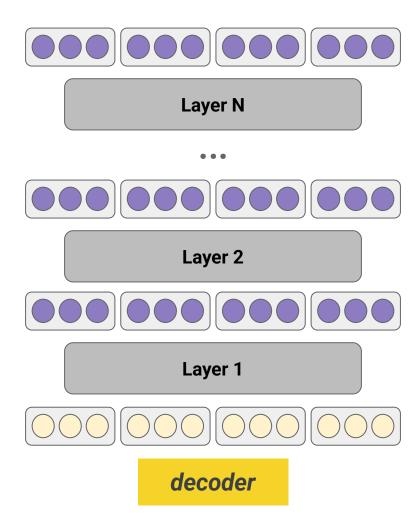
Logistics

- Feedback & grades for final project proposals released
- HW 2 released due 11/18
- Final presentations: 12/4 & 12/9

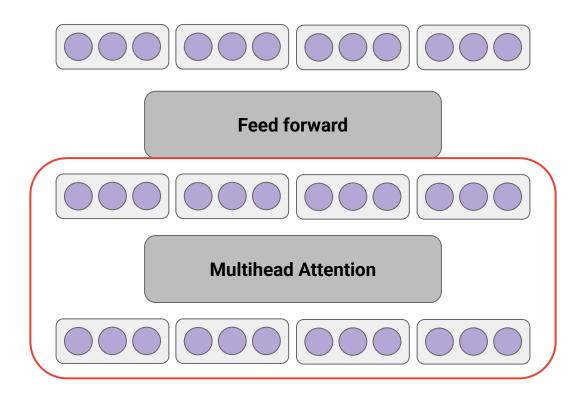
Decoder-only Transformer review



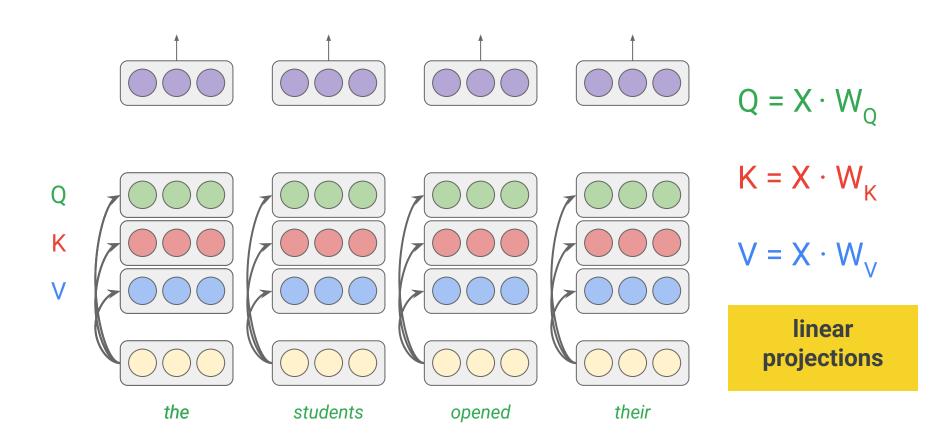
Transformer (N layers)



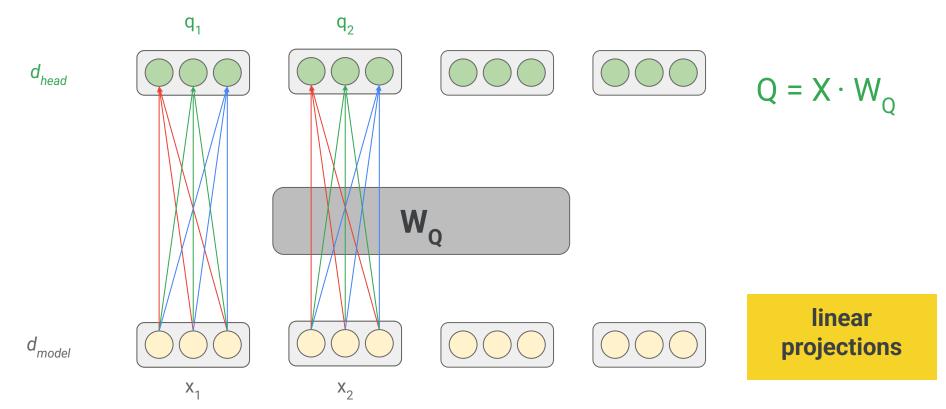
Transformer decoder



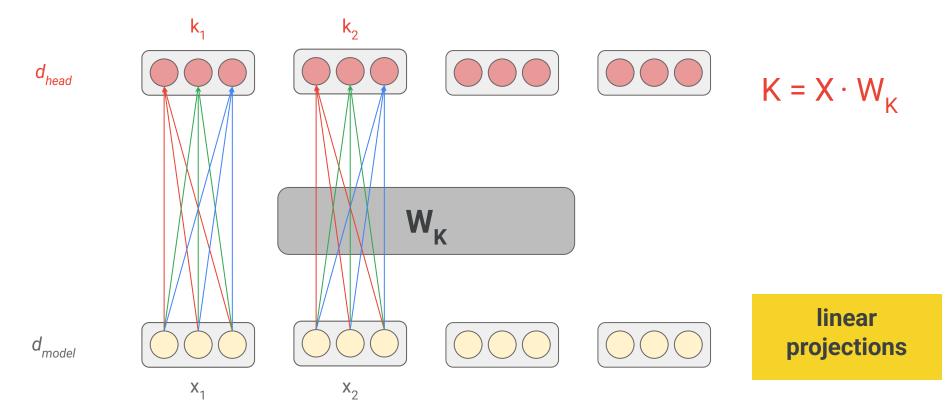
Attention



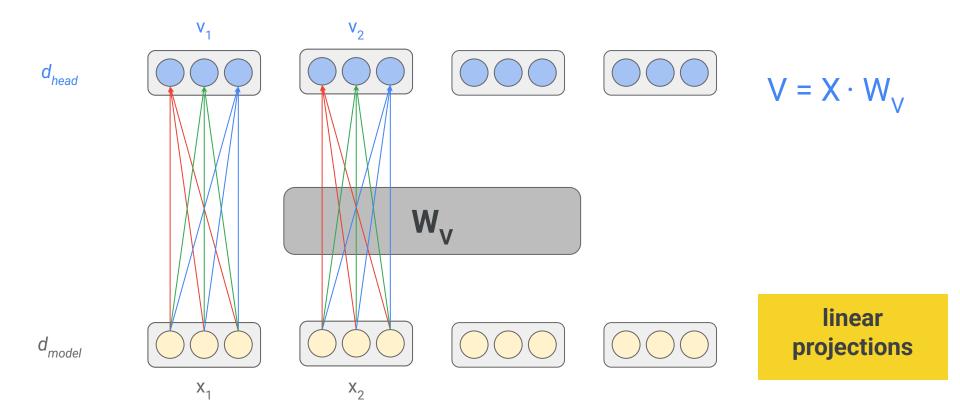
Query vectors



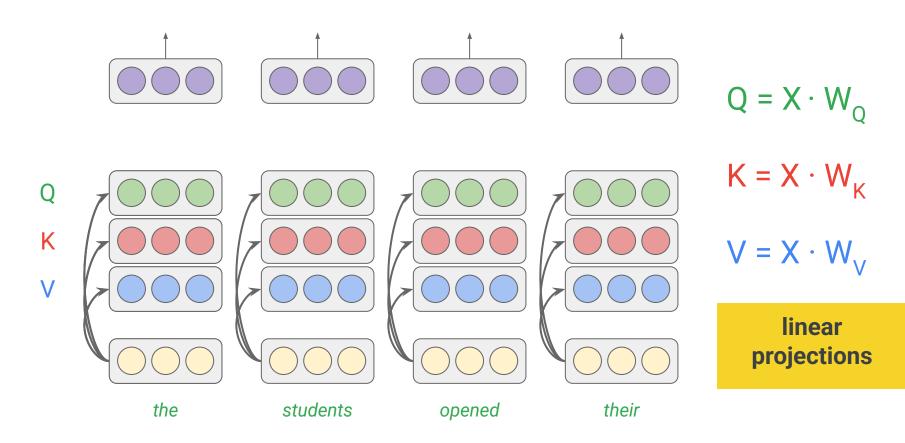
Key vectors



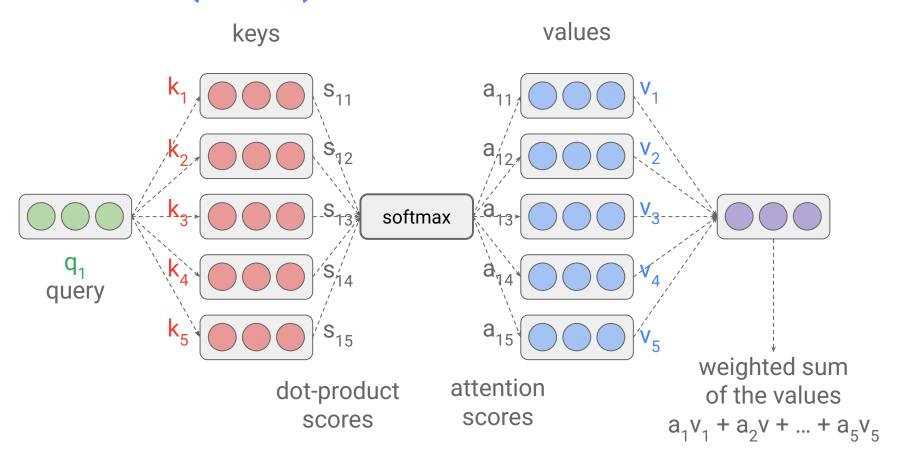
Value vectors



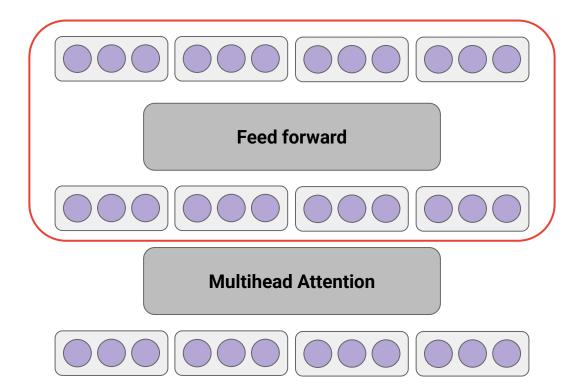
Attention (cont'd)



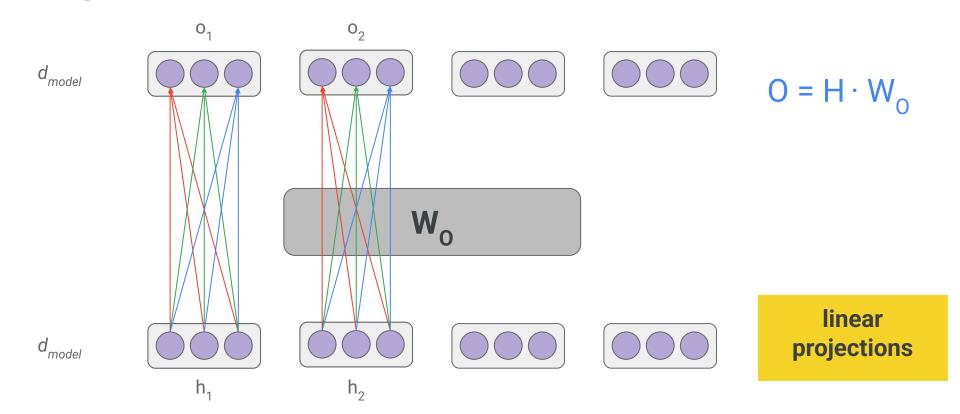
Attention (cont'd)



Transformer decoder



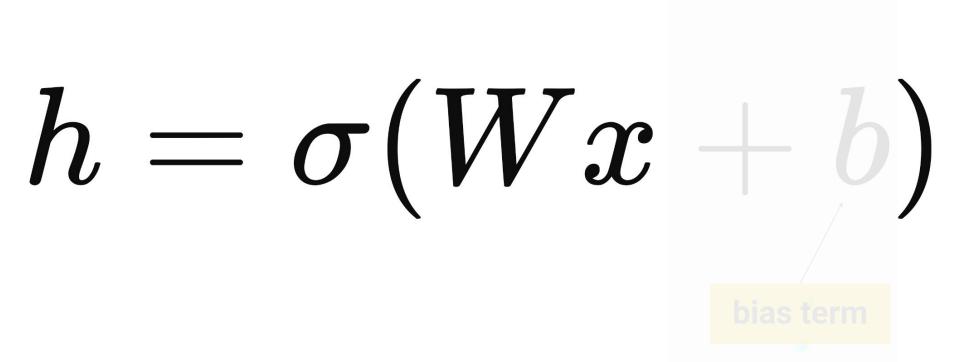
output vectors



Model parameters (weights)

- Weight matrices
 - \circ E.g., W_Q , $W_{K'}$, $W_{V'}$, W_O
- Bias terms

Bias term



Updating model parameters

$$w_{t+1} = w_t - \eta \cdot rac{\partial L}{\partial w_t}$$

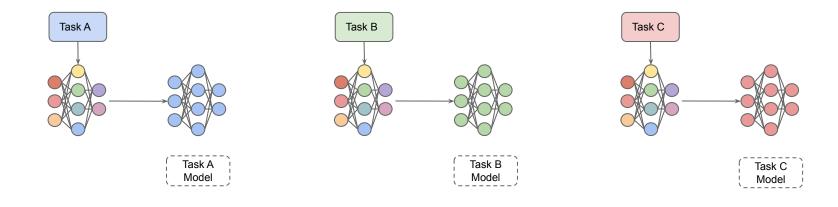
Where:

- w_t is the parameter at the current time step.
- w_{t+1} is the updated parameter after applying the gradient.
- η is the learning rate, which controls the step size.
- $\frac{\partial L}{\partial w_t}$ is the gradient of the loss function L with respect to the parameter w_t , representing how the loss changes as the parameter changes.

Updating model parameters (cont'd)

$$W' = W + \Delta W$$

Full model fine-tuning (Full FT)



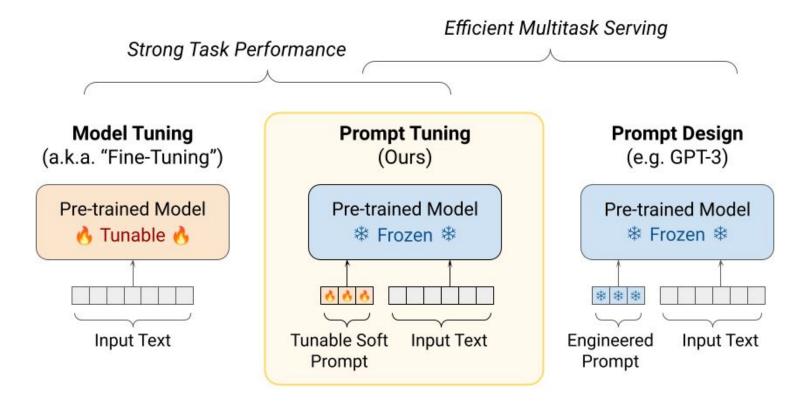
Limitations of full model tuning

The Power of Scale for Parameter-Efficient Prompt Tuning

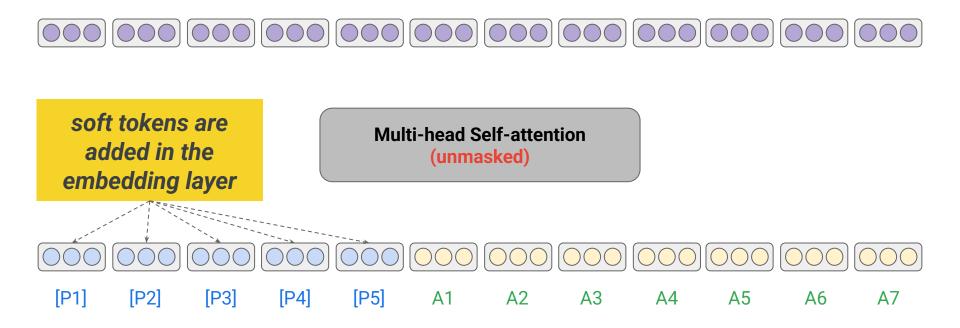
Brian Lester* Rami Al-Rfou Noah Constant Google Research

{brianlester, rmyeid, nconstant}@google.com

Soft prompt tuning

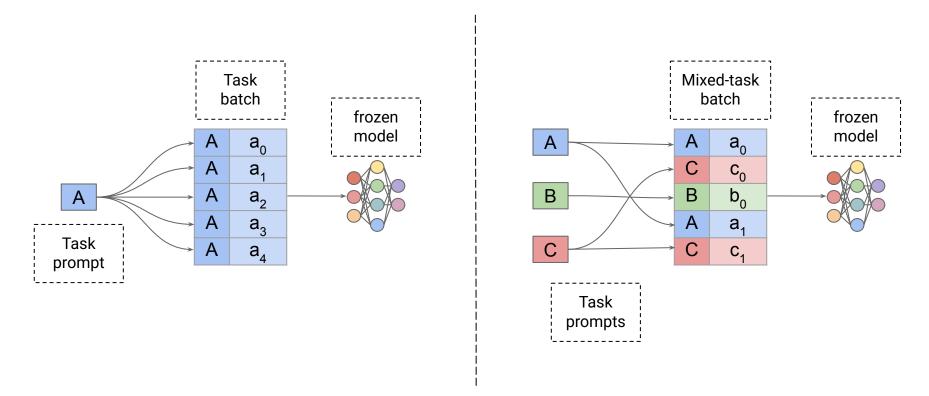


Soft prompt

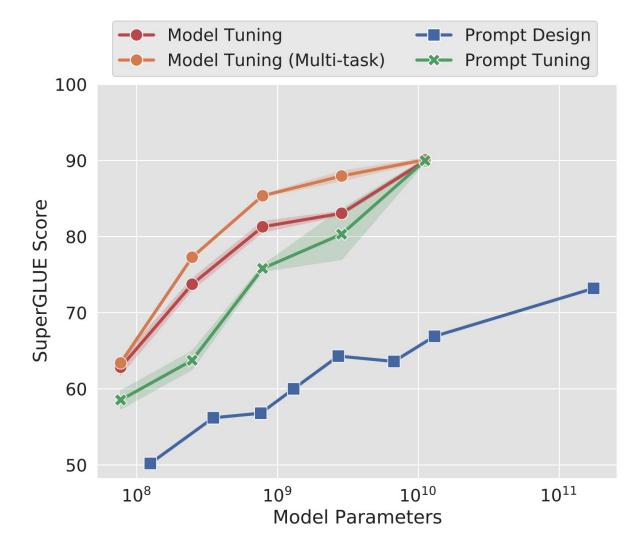


Advantages of soft prompt tuning

Parameter-efficient tuning & mixed-task inference



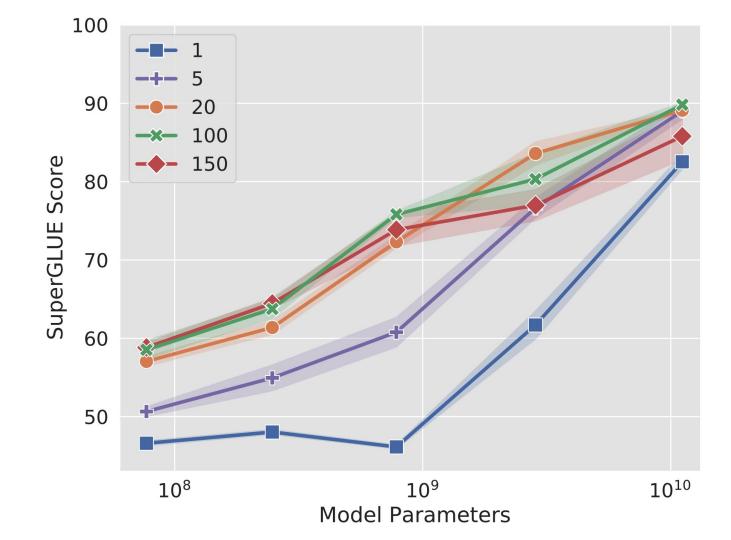
Improvement with Scale



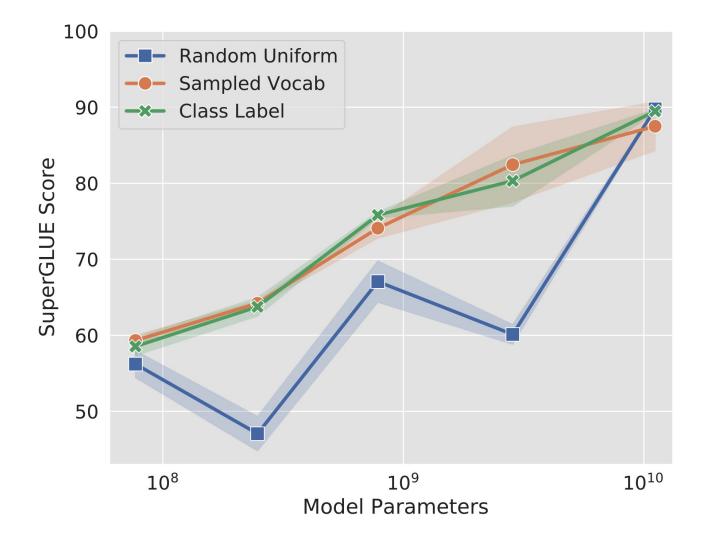
Resilience to domain shift

Train	Eval	Tuning	Accuracy	F1
QQP	MRPC		73.1 \pm 0.9 76.3 \pm 0.1	81.2 ± 2.1 84.3 ± 0.3
MRPC	QQP	Model Prompt	74.9 \pm 1.3 75.4 \pm 0.8	70.9 ± 1.2 69.7 ± 0.3

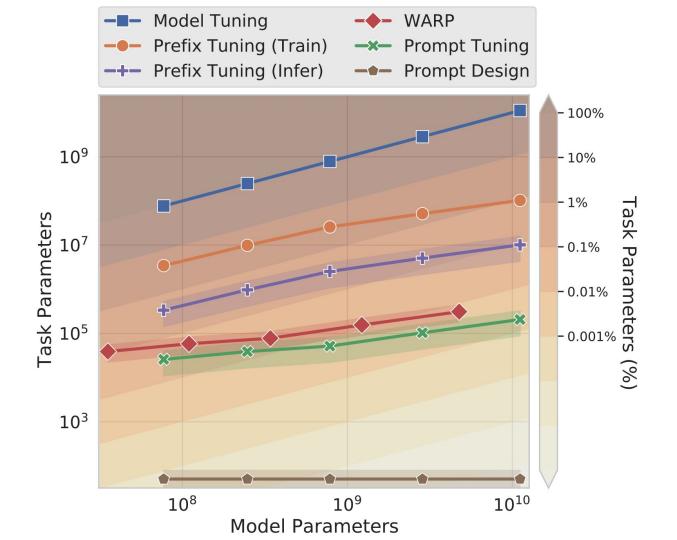
Effect of prompt length



Effect of prompt initialization



Parameter usage



Interpretability

the learned prompts taken as sequences show little interpretability

Limitations of soft prompt tuning

SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer

Tu Vu^{1,2}★ Brian Lester¹ Noah Constant¹ Rami Al-Rfou¹ Daniel Cer¹
Google Research¹

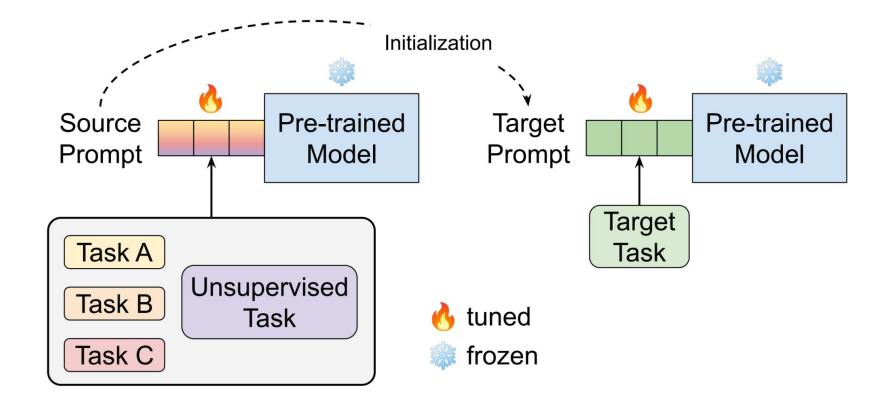
University of Massachusetts Amherst²

{ttvu,brianlester,nconstant,rmyeid,cer}@google.com tuvu@cs.umass.edu

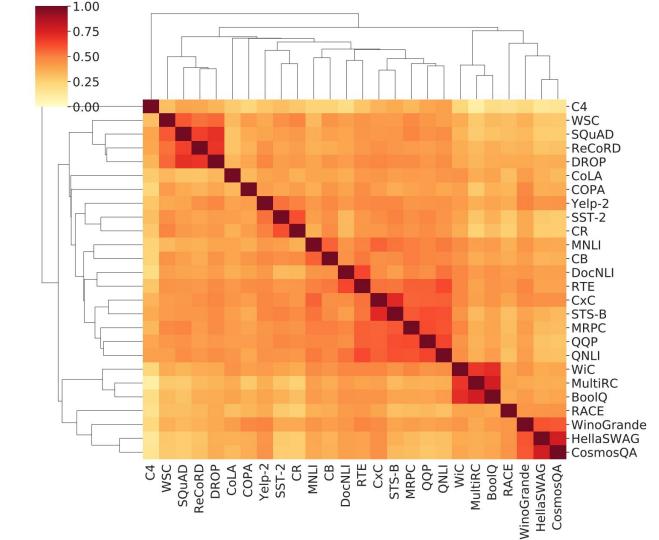
Generic SPoT

Source Prompt Tuning

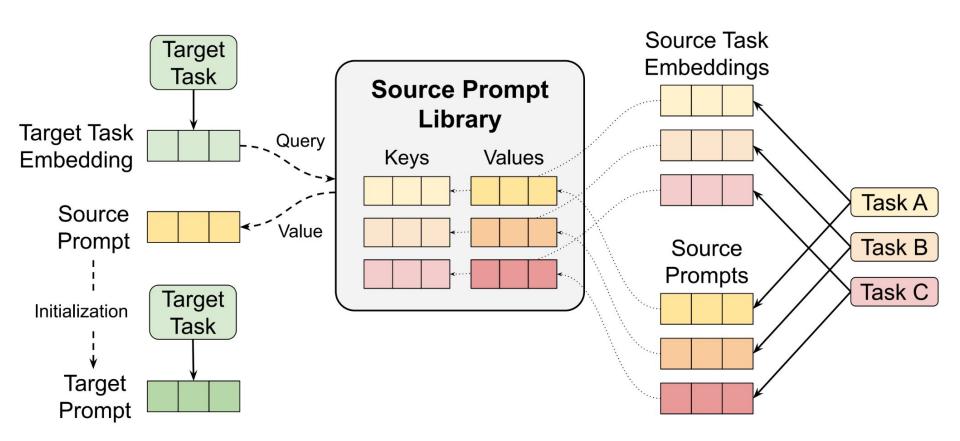
Target Prompt Tuning



Prompt-based task embeddings capture task relationships



Targeted SPoT



BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models

Elad Ben-Zaken¹ Shauli Ravfogel^{1,2} Yoav Goldberg^{1,2}

¹Computer Science Department, Bar Ilan University

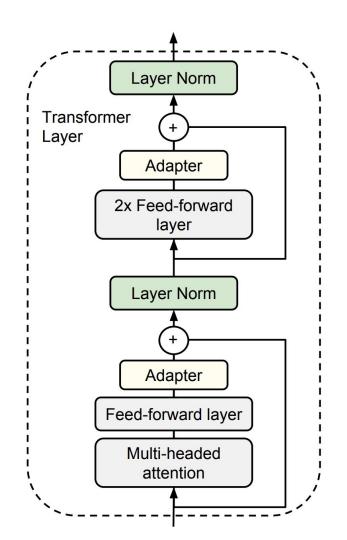
²Allen Institute for Artificial Intelligence

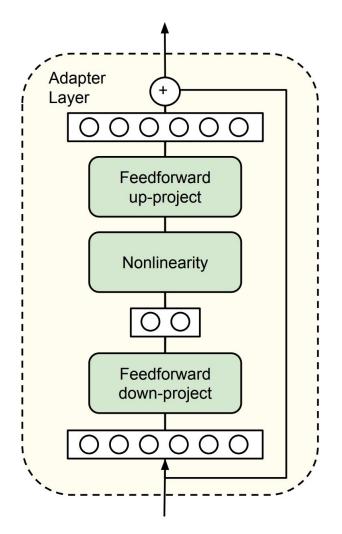
{benzakenelad, shauli.ravfogel, yoav.goldberg}@gmail.com

Parameter-Efficient Transfer Learning for NLP

Neil Houlsby 1 Andrei Giurgiu $^{1\,*}$ Stanisław Jastrzębski $^{2\,*}$ Bruna Morrone 1 Quentin de Laroussilhe 1 Andrea Gesmundo 1 Mona Attariyan 1 Sylvain Gelly 1

Adapters





Prefix-Tuning: Optimizing Continuous Prompts for Generation

Xiang Lisa Li

Stanford University

xlisali@stanford.edu

Percy Liang

Stanford University

pliang@cs.stanford.edu

LoRA

Algebra review

- The rank of a matrix is the number of linearly independent rows or columns (whichever is smaller)
- A full-rank matrix refers to a matrix that does not have any constraints on its rank. In other words, it has the maximum possible rank, meaning all of its rows and columns are linearly independent.

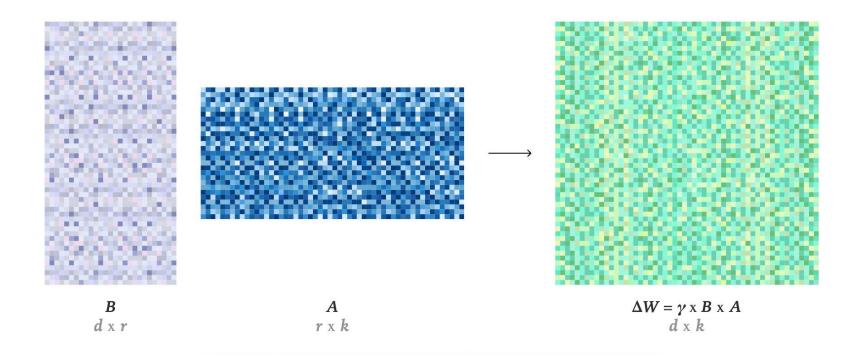
LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

```
Edward Hu* Yelong Shen* Phillip Wallis Zeyuan Allen-Zhu Yuanzhi Li Shean Wang Lu Wang Weizhu Chen Microsoft Corporation {edwardhu, yeshe, phwallis, zeyuana, yuanzhil, swang, luw, wzchen}@microsoft.com yuanzhil@andrew.cmu.edu
```

Weight changes during model adaptation have a low "intrinsic rank"

- The learned over-parametrized models in fact reside on a low intrinsic dimension
 - intrinsic dimension: the minimal number of variables needed to describe the essential variations in the data
- Many real-world high-dimensional datasets actually lie on or near a lower-dimensional manifold embedded in the high-dimensional space
- If a model or function resides in a low intrinsic dimension, then it may be possible to approximate it well with fewer parameters or a lower-dimensional representation, leading to improved generalization and efficiency

LoRA

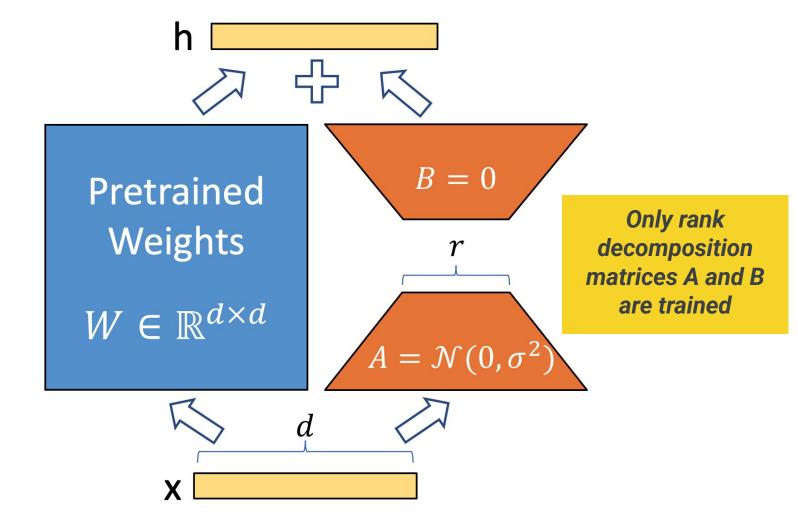


For a pre-trained weight matrix $W_0\in\mathbb{R}^{d\times k}$, we constrain its update by representing the latter with a low-rank decomposition $W_0+\Delta W=W_0+BA$, where $B\in\mathbb{R}^{d\times r}$, $A\in\mathbb{R}^{r\times k}$, and the rank $r\ll \min(d,k)$. During training, W_0 is frozen and does not receive gradient updates, while A and B contain trainable parameters. Note both W_0 and $\Delta W=BA$ are multiplied with the same input, and their respective output vectors are summed coordinate-wise.

For $h = W_0 x$, our modified forward pass yields:

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

LoRA



Advantages of LoRA

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})*$	0.3M	$87.1_{\pm .0}$	$94.2 \scriptstyle{\pm .1}$	$88.5{\scriptstyle\pm1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle{\pm .0}$	$71.5{\scriptstyle\pm2.7}$	$89.7_{\pm.3}$	84.4
$RoB_{base} (Adpt^{D})*$	0.9M	$87.3_{\pm .1}$	$94.7 \scriptstyle{\pm .3}$	$88.4_{\pm.1}$	$62.6 \scriptstyle{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm .7}$	$63.4_{\pm 1.2}$	$\textbf{93.3}_{\pm .3}$	$\textbf{90.8}_{\pm.1}$	$\pmb{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 ±.2	$96.2 \scriptstyle{\pm .5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	94.9 $_{\pm .3}$	$91.6 \scriptstyle{\pm .1}$	87.4 ± 2.5	92.6 $_{\pm .2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P)†	0.8M	90.5 _{±.3}	96.6 $_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 $_{\pm .3}$	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	$89.9_{\pm .5}$	$96.2 \scriptstyle{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7 \scriptstyle{\pm .2}$	$92.1 \scriptstyle{\pm .1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H)†	0.8M	90.3 _{±.3}	$96.3 \scriptstyle{\pm .5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm.2}$	$91.5 \scriptstyle{\pm .1}$	$72.9_{\pm 2.9}$	$91.5_{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 ±.2	$96.2 \scriptstyle{\pm .5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2 \scriptstyle{\pm 1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6 \scriptstyle{\pm .2}$	$85.2_{\pm 1.1}$	92.3 $_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	$\textbf{72.4}_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

Moderawiethod	Parameters	Acc. (%)	Acc. (%)	R1/R2/RL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

WikiSQL

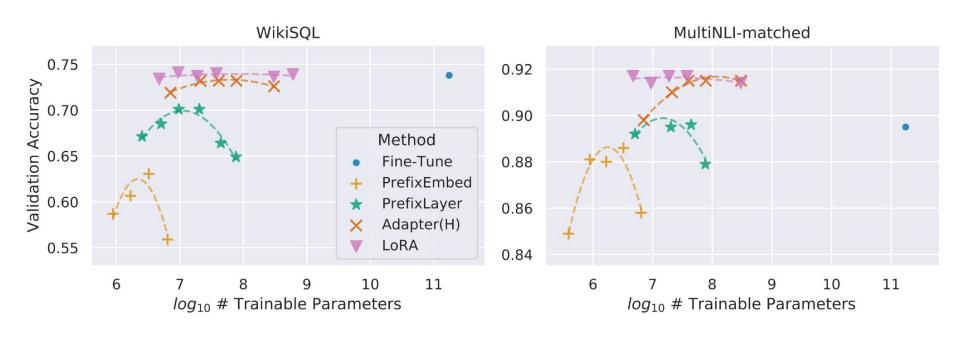
MNLI-m

SAMSum

Trainable

Model&Method

LoRA exhibits better scalability and task performance



Given a limited parameter budget, which weight matrices should we apply LoRA to?

	# of Trainable Parameters = 18M						
Weight Type Rank r	$\left egin{array}{c} W_q \ 8 \end{array} ight $	W_k 8	$W_v 8$	W_o	W_q,W_k	W_q,W_v	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	70.4 91.0		73.0 91.0		71.4 91.3	73.7 91.3	73.7 91.7

The effect of rank *r* on model performance

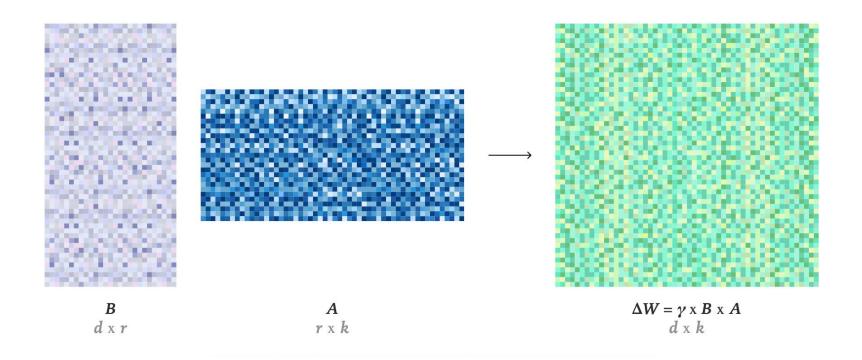
	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	W_q	68.8	69.6	70.5	70.4	70.0
	$W_q, ar{W}_v$	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
MultiNLI (±0.1%)	W_q	90.7	90.9	91.1	90.7	90.7
	W_q, W_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

practical recommendations

of training examples

- < 20: LoRA is difficult to train
- 50: LoRA w/ careful settings can be better than full model fine-tuning; r=1 or 4
- O(100): e.g., 200-500, LoRA is recommended; r=1 or 4
- O(10K): should compare LoRA vs. full model fine-tuning
- Very large (>100K): LoRA can get decent quality to match full model fine-tuning when r is large, e.g., 128 or 512

LoRA Without Regret

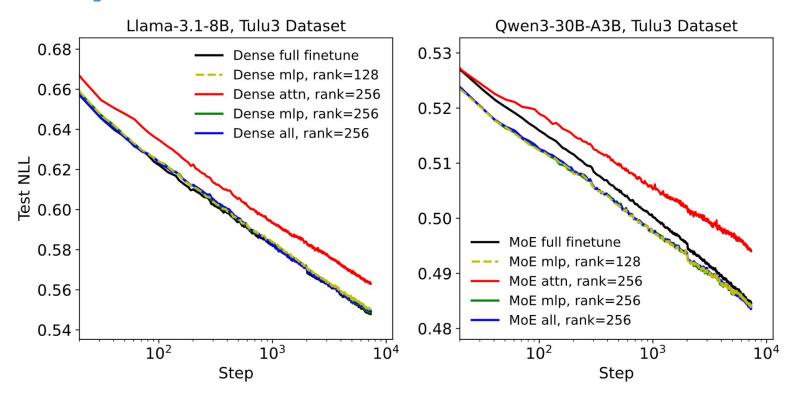


LoRA Without Regret

- LoRA can match full fine-tuning both in sample efficiency and final performance – so long as two conditions hold:
 - You apply LoRA to all the weight matrices (especially MLP / MoE layers, not just attention).
 - The adapter has enough capacity relative to the amount of information to learn

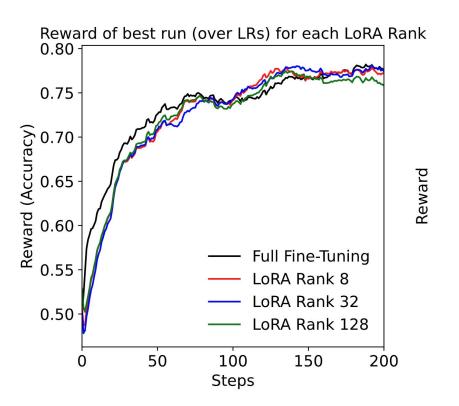
If the adapter rank is too small, LoRA becomes bottlenecked and cannot capture all the necessary updates (GPT-style models have a capacity of approximately 3.6 bits per parameter)

Attention-only LoRA significantly underperforms MLP-only LoRA



https://thinkingmachines.ai/blog/lora/

LoRA vs. Full Fine-tuning



https://thinkingmachines.ai/blog/lora/

LoRA Learns Less and Forgets Less

Dan Biderman^{1,2}, Jacob Portes², Jose Javier Gonzalez Ortiz², Mansheej Paul², Philip Greengard¹, Connor Jennings², Daniel King², Sam Havens², Vitaliy Chiley², Jonathan Frankle², Cody Blakeney², John P. Cunningham¹

¹Columbia University {db3236, pg2118, jpc2181}@columbia.edu

²Databricks Mosaic Research {jacob.portes, j.gonzalez, mansheej.paul, connor.jennings, daniel.king, sam.havens, vitaliy.chiley, jfrankle, cody.blakeney}@databricks.com

Efficient Cross-Task Generalization via Dynamic LoRA Composition

Chengsong Huang^{†§*}, Qian Liu^{†*}, Bill Yuchen Lin^{©*}, Tianyu Pang[†], Chao Du[†], Min Lin[†]

[†]Sea AI Lab, Singapore

[§]Washington University in St. Louis, MO, USA

[©]Allen Institute for AI, Seattle, WA, USA

Limitations of parameter-efficient tuning methods

Thank you!