
Language modeling

Tu Vu

CS 4804: Introduction to AI
Fall 2025

https://tuvllms.github.io/ai-fall-2025/

https://tuvllms.github.io/ai-fall-2025/


● Contact: Please email all of us at cs4804instructors@gmail.com 
For anonymous questions or comments, please use this form

Staff

Office hours (both in-person 
and via Zoom) will start next 
week. Zoom links will be 
posted on Piazza.

mailto:cs4804instructors@gmail.com
https://docs.google.com/forms/d/e/1FAIpQLScoNYiaeiQqDXK8T-avkNLyYOkQzAlnIE0k6dJjSWx0UVVZOA/viewform


Final project

● The class size has exceeded 70 students and is still growing
● Groups of 5-6; all groups should be formed by September 

5th

● A Google form for submitting group information will be 
available next week

● Search for teammates on Piazza 
https://piazza.com/class/meqiibrwtql168/post/5

or reach out to us at cs4804instructors@gmail.com

https://piazza.com/class/meqiibrwtql168/post/5
mailto:cs4804instructors@gmail.com


Final project (cont’d)

“If I were given one hour to save the planet, I would spend 59 
minutes defining the problem and one minute resolving it.” 

— Albert Einstein?



Homework

● Homework 0 will be released tomorrow (due September 
12th)



Agent framework
● Environment: The external world the agent operates in
● Percepts: The inputs the agent receives from the environment through sensors
● State: The agent’s internal representation of the environment, derived from its 

percept history
● Actions: The outputs the agent produces through actuators that affect the 

environment
● Agent function: The abstract mapping from percepts (or percept history) to 

actions
● Agent program: The concrete implementation of the agent function in software
● Agent architecture: The underlying hardware or computational platform that 

runs the agent program



LLM agent
● Environment: The conversational space that includes the user, their queries, and 

any external systems the chatbot can access
● Percepts: The inputs the chatbot receives, which include user prompts, context 

history, and external data sources
● State: The chatbot’s internal representation of the conversation, which is derived 

from the sequence of user inputs and past responses
● Actions: The outputs the chatbot produces, such as text completions, tool calls, or 

structured responses that affect the conversation or external systems
● Agent function: The abstract mapping from inputs (including prompt and context 

history) to outputs (responses or actions)
● Agent program: The specific software implementation of the agent function, 

including the trained model weights, inference code, and orchestration logic
● Agent architecture: The underlying computational infrastructure that runs the 

chatbot, including model architecture, servers, GPUs, and memory systems



Mixture-of-Agents

https://docs.together.ai/docs/mixture-of-agents#advanced-moa-example

https://docs.together.ai/docs/mixture-of-agents#advanced-moa-example
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https://x.com/lyang36/status/1960726356175806533

https://x.com/lyang36/status/1960726356175806533


https://arxiv.org/abs/2507.14897

https://arxiv.org/abs/2507.14897


https://arxiv.org/abs/2508.16153

https://arxiv.org/abs/2508.16153
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Probability

● Conditional probability

      Rewriting

● Chain rule



The development of modern LLMs

instruction 
following

creativity

factuality safety

code math

…

pretraining 

post-training
Supervised Fine-Tuning (SFT) / Reinforcement Learning (RL) 

one or more 
stagesw/ a language 

modeling objective



Language modeling

● Predicting the next/missing word

Example: “The cat is on the ___.” → Predicted: “mat”.



What is a language model?

● A machine learning model that assigns a probability to each 
possible next word, or a probability distribution over 
possible next words

students opened their LM

books laptops

1.0

0.0



What is a language model? (cont’d)

● A language model can also assign a probability to an entire 
sentence

P(“The cat is on the mat”) > P(“On the mat, the cat is”) 

P(“The cat is on the mat”) = P(“The”) x P(“cat” | “The”) x P(“is” | 
“The cat”) x P(“on” | “The cat is”) x P(“the” | “The cat is on”) x 
P(“mat” | “The cat is on the”) 



You use language models everyday!

19source: Apple Support source: Google Blog

prefix

https://support.apple.com/en-us/HT207525
https://blog.google/products/search/how-google-autocomplete-works-search/


Two categories of language models

● Statistical/Probabilistic language models
○ N-gram / Count-based language models

● Neural language models (e.g., ChatGPT, Gemini)



N-grams

● An n-gram is a sequence of n words
● Unigram (n=1)

○ “The”, “water”, “of”, “Walden”, “Pond”
● Bigram (n=2)

○ “The water”, “water of”, “of Walden”, “Pond”
● Trigram (n=3)

○ “The water of”, “water of Walden”, “of Walden Pond”
● 4-gram
● …



N-grams (cont’d)

● Notation
○ word type: a unique word in our vocabulary
○ token: an individual occurrence of a word type

Example: “I am Sam. Sam am I. I do not like green eggs and 
ham.”

→ one word type of “I”, three tokens of “I”



N-grams (cont’d)

● How to compute the probabilities?

P(“blue” | “The water of Walden Pond is so beautifully”)
=

Count(“The water of Walden Pond is so beautifully blue”)

Count(“The water of Walden Pond is so beautifully”)

What is the problem with this approach?



The Markov assumption

● n-gram model: Approximate the prefix by just the last n-1 
words 

● bigram (n=2) model

P(“blue” | “The water of Walden Pond is so beautifully”) 
= P(“blue” | beautifully”)

● trigram (n=3) model

P(“blue” | “The water of Walden Pond is so beautifully”) 
= P(“blue” | so beautifully”)



The Markov assumption (cont’d)

● unigram model

● bigram model



Maximum likelihood estimation (MLE)

relative frequency

source: Jurafsky and Martin



Example

● From a restaurant corpus

“can you tell me about any good cantonese restaurants 
close by” 

“tell me about chez panisse” 

“i’m looking for a good place to eat breakfast” 

“when is caffe venezia open during the day”

source: Jurafsky and Martin



Example (cont’d)

prefix

target

unigram 
counts

want 
followed 

i 827 
times

source: Jurafsky and Martin



Example (cont’d) 827/2533

source: Jurafsky and Martin



Example (cont’d) sparsity  
issue 

source: Jurafsky and Martin



How to sample sentences from a language model?

● Decoding strategies
○ Greedy decoding
○ Sampling
○ Others (future lecture)

students opened their LM

books laptops

1.0

0.0



Sample generations

from King John

source: Jurafsky and Martin



Is a 4-gram model sufficient for language modeling?

● In general, this is insufficient for language because it fails to 
account for long-distance dependencies.

Example: “The computer which I had just put into the 
machine room on the fifth floor crashed.”

source: Mohit Iyyer



Should we increase the value of n?

● As n increases, the number of possible n-grams grows 
exponentially (many n-grams have insufficient or no data)

● Storing and processing large n-grams requires more memory and 
computational power

● Beyond a certain point, increasing n may not yield significant 
performance improvements, especially if the dataset does not 
contain sufficient examples of longer n-grams



Shakespeare as corpus

● T=884,647 tokens, V=29,066
● Shakespeare produced 300,000 bigram types out of V2= 

844,000,000 possible bigrams.
● 99.96% of the possible bigrams have zero entries in the 

bigram table (were never seen)!



Evaluating language models

Train Dev Validation

Test usually used 
interchangeably



Never train on the test set!



Perplexity

We normalize by the 
number of words N by 

taking the Nth root



Perplexity as Weighted Average Branching Factor

● Suppose a sentence consists of random digits.
What is the perplexity of this sentence for a model that 
assigns a probability of 1/10  to each digit?



Lower perplexity = Better language model

source: Jurafsky and Martin



In practice, we use log probs

logs to avoid 
numerical underflow

source: Mohit Iyyer



In practice, we use log probs (cont’d)

perplexity is the 
exponentiated token-level 

negative log-likelihood

source: Mohit Iyyer



Infini-gram: Scaling Unbounded n-gram Language 
Models to a Trillion Tokens

https://arxiv.org/abs/2401.17377

https://arxiv.org/abs/2401.17377


Thank you!


