
Language modeling

Tu Vu

CS 4804: Introduction to AI
Fall 2025

https://tuvllms.github.io/ai-fall-2025/

https://tuvllms.github.io/ai-fall-2025/

● Contact: Please email all of us at cs4804instructors@gmail.com
For anonymous questions or comments, please use this form

Staff

Office hours (both in-person
and via Zoom) will start next
week. Zoom links will be
posted on Piazza.

mailto:cs4804instructors@gmail.com
https://docs.google.com/forms/d/e/1FAIpQLScoNYiaeiQqDXK8T-avkNLyYOkQzAlnIE0k6dJjSWx0UVVZOA/viewform

Final project

● The class size has exceeded 70 students and is still growing
● Groups of 5-6; all groups should be formed by September

5th

● A Google form for submitting group information will be
available next week

● Search for teammates on Piazza
https://piazza.com/class/meqiibrwtql168/post/5

or reach out to us at cs4804instructors@gmail.com

https://piazza.com/class/meqiibrwtql168/post/5
mailto:cs4804instructors@gmail.com

Final project (cont’d)

“If I were given one hour to save the planet, I would spend 59
minutes defining the problem and one minute resolving it.”

— Albert Einstein?

Homework

● Homework 0 will be released tomorrow (due September
12th)

Agent framework
● Environment: The external world the agent operates in
● Percepts: The inputs the agent receives from the environment through sensors
● State: The agent’s internal representation of the environment, derived from its

percept history
● Actions: The outputs the agent produces through actuators that affect the

environment
● Agent function: The abstract mapping from percepts (or percept history) to

actions
● Agent program: The concrete implementation of the agent function in software
● Agent architecture: The underlying hardware or computational platform that

runs the agent program

LLM agent
● Environment: The conversational space that includes the user, their queries, and

any external systems the chatbot can access
● Percepts: The inputs the chatbot receives, which include user prompts, context

history, and external data sources
● State: The chatbot’s internal representation of the conversation, which is derived

from the sequence of user inputs and past responses
● Actions: The outputs the chatbot produces, such as text completions, tool calls, or

structured responses that affect the conversation or external systems
● Agent function: The abstract mapping from inputs (including prompt and context

history) to outputs (responses or actions)
● Agent program: The specific software implementation of the agent function,

including the trained model weights, inference code, and orchestration logic
● Agent architecture: The underlying computational infrastructure that runs the

chatbot, including model architecture, servers, GPUs, and memory systems

Mixture-of-Agents

https://docs.together.ai/docs/mixture-of-agents#advanced-moa-example

https://docs.together.ai/docs/mixture-of-agents#advanced-moa-example

https://deepmind.google/discover/
blog/advanced-version-of-gemini-wi
th-deep-think-officially-achieves-gol
d-medal-standard-at-the-internation

al-mathematical-olympiad/

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/

https://x.com/lyang36/status/1960726356175806533

https://x.com/lyang36/status/1960726356175806533

https://arxiv.org/abs/2507.14897

https://arxiv.org/abs/2507.14897

https://arxiv.org/abs/2508.16153

https://arxiv.org/abs/2508.16153

https://arxiv.org/abs/2508.16153

https://arxiv.org/abs/2508.16153

Probability

● Conditional probability

 Rewriting

● Chain rule

The development of modern LLMs

instruction
following

creativity

factuality safety

code math

…

pretraining

post-training
Supervised Fine-Tuning (SFT) / Reinforcement Learning (RL)

one or more
stagesw/ a language

modeling objective

Language modeling

● Predicting the next/missing word

Example: “The cat is on the ___.” → Predicted: “mat”.

What is a language model?

● A machine learning model that assigns a probability to each
possible next word, or a probability distribution over
possible next words

students opened their LM

books laptops

1.0

0.0

What is a language model? (cont’d)

● A language model can also assign a probability to an entire
sentence

P(“The cat is on the mat”) > P(“On the mat, the cat is”)

P(“The cat is on the mat”) = P(“The”) x P(“cat” | “The”) x P(“is” |
“The cat”) x P(“on” | “The cat is”) x P(“the” | “The cat is on”) x
P(“mat” | “The cat is on the”)

You use language models everyday!

19source: Apple Support source: Google Blog

prefix

https://support.apple.com/en-us/HT207525
https://blog.google/products/search/how-google-autocomplete-works-search/

Two categories of language models

● Statistical/Probabilistic language models
○ N-gram / Count-based language models

● Neural language models (e.g., ChatGPT, Gemini)

N-grams

● An n-gram is a sequence of n words
● Unigram (n=1)

○ “The”, “water”, “of”, “Walden”, “Pond”
● Bigram (n=2)

○ “The water”, “water of”, “of Walden”, “Pond”
● Trigram (n=3)

○ “The water of”, “water of Walden”, “of Walden Pond”
● 4-gram
● …

N-grams (cont’d)

● Notation
○ word type: a unique word in our vocabulary
○ token: an individual occurrence of a word type

Example: “I am Sam. Sam am I. I do not like green eggs and
ham.”

→ one word type of “I”, three tokens of “I”

N-grams (cont’d)

● How to compute the probabilities?

P(“blue” | “The water of Walden Pond is so beautifully”)
=

Count(“The water of Walden Pond is so beautifully blue”)

Count(“The water of Walden Pond is so beautifully”)

What is the problem with this approach?

The Markov assumption

● n-gram model: Approximate the prefix by just the last n-1
words

● bigram (n=2) model

P(“blue” | “The water of Walden Pond is so beautifully”)
= P(“blue” | beautifully”)

● trigram (n=3) model

P(“blue” | “The water of Walden Pond is so beautifully”)
= P(“blue” | so beautifully”)

The Markov assumption (cont’d)

● unigram model

● bigram model

Maximum likelihood estimation (MLE)

relative frequency

source: Jurafsky and Martin

Example

● From a restaurant corpus

“can you tell me about any good cantonese restaurants
close by”

“tell me about chez panisse”

“i’m looking for a good place to eat breakfast”

“when is caffe venezia open during the day”

source: Jurafsky and Martin

Example (cont’d)

prefix

target

unigram
counts

want
followed

i 827
times

source: Jurafsky and Martin

Example (cont’d) 827/2533

source: Jurafsky and Martin

Example (cont’d) sparsity
issue

source: Jurafsky and Martin

How to sample sentences from a language model?

● Decoding strategies
○ Greedy decoding
○ Sampling
○ Others (future lecture)

students opened their LM

books laptops

1.0

0.0

Sample generations

from King John

source: Jurafsky and Martin

Is a 4-gram model sufficient for language modeling?

● In general, this is insufficient for language because it fails to
account for long-distance dependencies.

Example: “The computer which I had just put into the
machine room on the fifth floor crashed.”

source: Mohit Iyyer

Should we increase the value of n?

● As n increases, the number of possible n-grams grows
exponentially (many n-grams have insufficient or no data)

● Storing and processing large n-grams requires more memory and
computational power

● Beyond a certain point, increasing n may not yield significant
performance improvements, especially if the dataset does not
contain sufficient examples of longer n-grams

Shakespeare as corpus

● T=884,647 tokens, V=29,066
● Shakespeare produced 300,000 bigram types out of V2=

844,000,000 possible bigrams.
● 99.96% of the possible bigrams have zero entries in the

bigram table (were never seen)!

Evaluating language models

Train Dev Validation

Test usually used
interchangeably

Never train on the test set!

Perplexity

We normalize by the
number of words N by

taking the Nth root

Perplexity as Weighted Average Branching Factor

● Suppose a sentence consists of random digits.
What is the perplexity of this sentence for a model that
assigns a probability of 1/10 to each digit?

Lower perplexity = Better language model

source: Jurafsky and Martin

In practice, we use log probs

logs to avoid
numerical underflow

source: Mohit Iyyer

In practice, we use log probs (cont’d)

perplexity is the
exponentiated token-level

negative log-likelihood

source: Mohit Iyyer

Infini-gram: Scaling Unbounded n-gram Language
Models to a Trillion Tokens

https://arxiv.org/abs/2401.17377

https://arxiv.org/abs/2401.17377

Thank you!

