# **Backpropagation**

CS 4804: Introduction to Al

https://tuvllms.github.io/ai-fall-2025/

Tu Vu



#### **Logistics**

- Google form for submitting group information available on Piazza (due tomorrow)
- Quiz 0 will be released on Piazza tomorrow (due September 12<sup>th</sup>)
  - graded for genuine attempt, not correctness

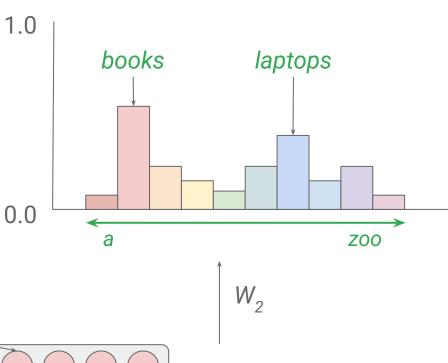
# A recap on neural networks

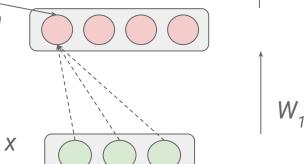
#### hidden layer

$$h = f(W_1 x)$$

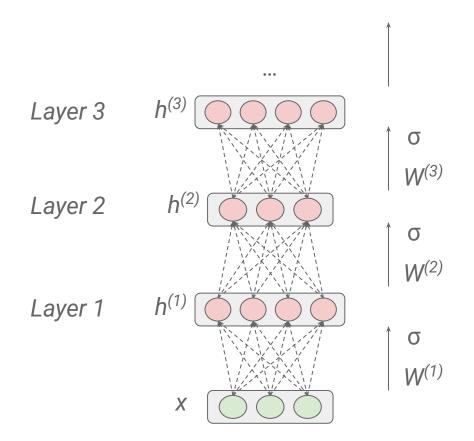
hidden unit (neuron):
taking a weighted
sum of its inputs and
then applying a
non-linearity

h





## **Deep neural networks**



hierarchical representations, where each layer builds upon the previous one

Let 
$$W=egin{bmatrix} w_{11}&w_{12}&w_{13}\ w_{21}&w_{22}&w_{23}\ w_{31}&w_{32}&w_{33}\ w_{41}&w_{42}&w_{43} \end{bmatrix}$$
 (dimensions  $4 imes 3$ ) and  $x=egin{bmatrix} x_1\ x_2\ x_3 \end{bmatrix}$  (dimensions  $3 imes 1$ ).

Then, the multiplication yields the output vector h as:

$$\lceil h_1 \rceil \qquad \lceil w_{11}x_1 + w_{12}x_2 + w_{12}x_2 \rceil$$

$$h = egin{bmatrix} h_1 \ h_2 \ h_3 \ h_4 \end{bmatrix} = egin{bmatrix} w_{11}x_1 + w_{12}x_2 + w_{13}x_3 \ w_{21}x_1 + w_{22}x_2 + w_{23}x_3 \ w_{31}x_1 + w_{32}x_2 + w_{33}x_3 \ w_{41}x_1 + w_{42}x_2 + w_{43}x_3 \end{bmatrix}$$
 (dimensions  $4 imes 1$ ).

Let  $W = egin{bmatrix} W_1 & W_2 & W_3 \end{bmatrix}$  , where:

$$W_1=egin{bmatrix} w_{11}\w_{21}\w_{31}\w_{41} \end{bmatrix},\quad W_2=egin{bmatrix} w_{12}\w_{22}\w_{32}\w_{42} \end{bmatrix},\quad W_3=egin{bmatrix} w_{13}\w_{23}\w_{33}\w_{43} \end{bmatrix} \quad ext{(dimensions } 4 imes 1)$$
 and  $x=egin{bmatrix} x_1\x_2\x_3 \end{bmatrix}$  (dimensions  $3 imes 1$ ).

Then, the multiplication yields the output vector h as:

$$h = egin{bmatrix} h_1 \ h_2 \ h_3 \ h_4 \end{bmatrix} = W_1 x_1 + W_2 x_2 + W_3 x_3 = egin{bmatrix} w_{11} x_1 + w_{12} x_2 + w_{13} x_3 \ w_{21} x_1 + w_{22} x_2 + w_{23} x_3 \ w_{31} x_1 + w_{32} x_2 + w_{33} x_3 \ w_{41} x_1 + w_{42} x_2 + w_{43} x_3 \end{bmatrix}$$

#### **Bias values**

$$h=\sigma(Wx+b)$$

# **Logits**

Logits: the vector of raw scores right before the final softmax

$$\hat{y} = egin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ dots \ \hat{y}_{V_1} \end{bmatrix}$$

$$\hat{y}_i = rac{e^{z_i}}{\sum_{i=1}^V e^{z_j}},$$

for  $i=1,2,\ldots,V$ 

#### **Geoffrey Hinton - "The Godfather of AI"**

Played a central role in reviving neural network research after the AI winters of the mid-1970s and late 1980s to early 1990s, when funding and interest in AI declined because earlier methods failed to deliver on their promises.



# **2018 Turing Award**



#### We want AI to be our mothers!



#### The partial derivative of the loss function

The partial derivative of the loss function L L with respect to the parameter w represents how much the loss changes as w W changes.

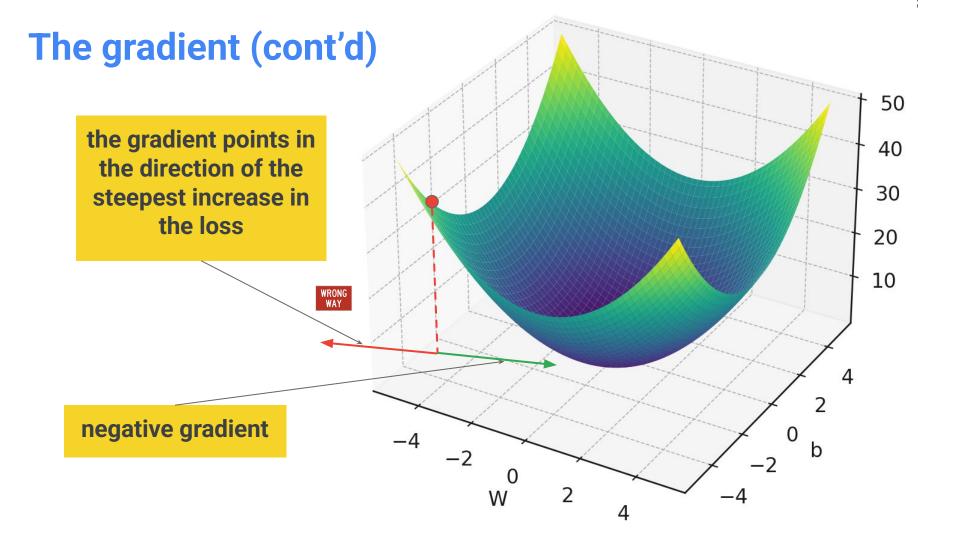


#### The gradient

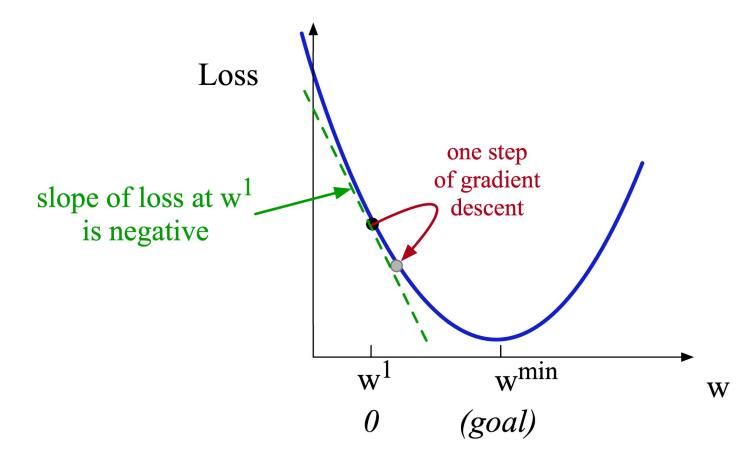
A **derivative** applies to a function with a single variable. It measures the rate of change of the function with respect to that variable. For example, if  $f(x)=x^2$ , then the derivative f'(x)=2x shows how fast f(x) changes as x changes.

A **gradient** applies to a function with multiple variables. It is a vector that contains all of the partial derivatives of the function with respect to each variable. For example, if  $f(x,y)=x^2+y^2$ , then the gradient is

$$abla f(x,y) = \left(rac{\partial f}{\partial x},rac{\partial f}{\partial y}
ight) = (2x,2y).$$

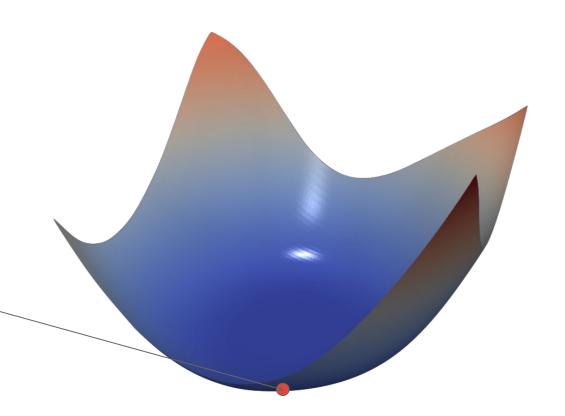


#### **Gradient descent**



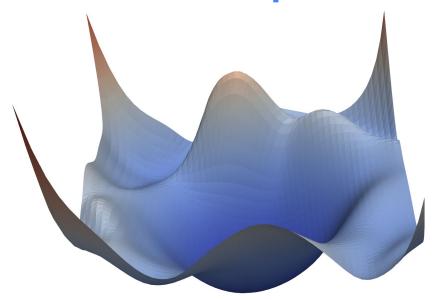
#### The loss landscape

A convex function has at most one minimum; there are no local minima to get stuck in.

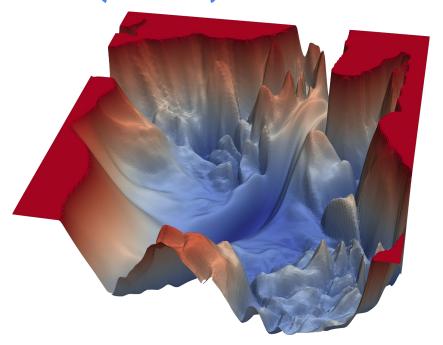


https://www.cs.umd.edu/~tomg/project/landscapes/

#### The loss landscape of neural nets (cont'd)



The loss for multi-layer neural networks is non-convex, and gradient descent may get stuck in local minima and never find the global optimum



https://www.cs.umd.edu/~tomg/project/ landscapes/

#### **Updating parameters**

$$w_{t+1} = w_t - \eta \cdot rac{\partial L}{\partial w_t}$$

## **Updating parameters (cont'd)**

$$w_{t+1} = w_t - \eta \cdot rac{\partial L}{\partial w_t}$$

#### Where:

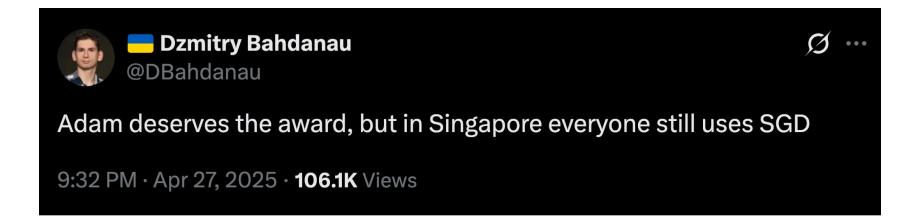
- $w_t$  is the parameter at the current time step.
- $w_{t+1}$  is the updated parameter after applying the gradient.
- $\eta$  is the learning rate, which controls the step size.
- $\frac{\partial L}{\partial w_t}$  is the gradient of the loss function L with respect to the parameter  $w_t$ , representing how the loss changes as the parameter changes.

## Hyperparameters of gradient descent

- Learning rate
- Batch size

#### **Optimizer**

- SGD (Stochastic gradient descent)
- Adam (Adaptive moment estimation)
- Muon



#### **Backpropagation**

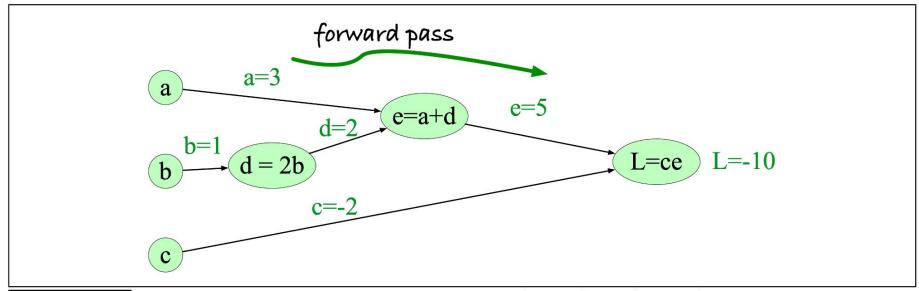


Figure 7.12 Computation graph for the function L(a,b,c) = c(a+2b), with values for input nodes  $a=3,\,b=1,\,c=-2$ , showing the forward pass computation of L.

#### **Backpropagation (cont'd)**

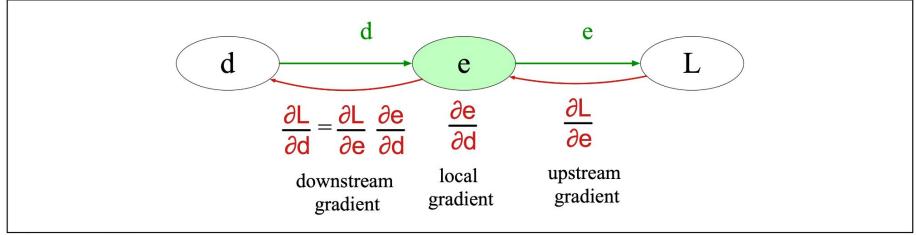


Figure 7.13 Each node (like *e* here) takes an upstream gradient, multiplies it by the local gradient (the gradient of its output with respect to its input), and uses the chain rule to compute a downstream gradient to be passed on to a prior node. A node may have multiple local gradients if it has multiple inputs.

#### **Backpropagation (cont'd)**

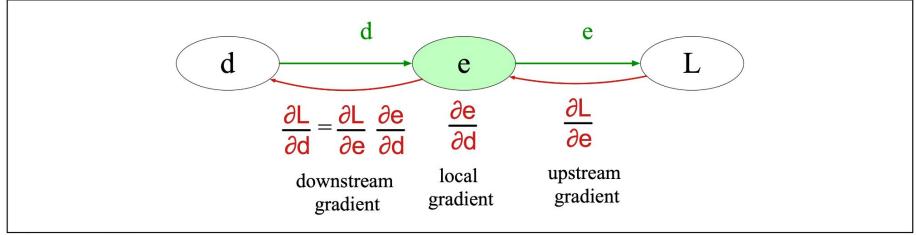


Figure 7.13 Each node (like *e* here) takes an upstream gradient, multiplies it by the local gradient (the gradient of its output with respect to its input), and uses the chain rule to compute a downstream gradient to be passed on to a prior node. A node may have multiple local gradients if it has multiple inputs.

#### **Cross-entropy loss**

#### The predicted probabilities

$$y = egin{bmatrix} y_1 \ y_2 \ dots \ y_V \end{bmatrix}$$

$$\hat{y} = egin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ dots \ \hat{y}_V \end{bmatrix}$$

#### The ground truth label

1. if 
$$i = c$$
 (correct class index

$$y_i = egin{cases} 1, & ext{if } i = c ext{ (correct class index)} \ 0, & ext{otherwise} \end{cases} \hat{y_i} = rac{e^{z_i}}{\sum_{j=1}^V e^{z_j}}, & ext{for } i = 1, 2, \dots, V$$

# **Cross-entropy loss (cont'd)**

$$L_{CE}(\hat{y},y) = -\sum_{i=1}^{v} y_i \log \hat{y}_i$$

$$L_{CE}(\hat{y},y) = -\left(y_1 \log \hat{y}_1 + y_2 \log \hat{y}_2 + \cdots + y_V \log \hat{y}_V
ight)$$

Since the true label y is one-hot encoded, only one term in the sum is nonzero, corresponding to the correct class c, where  $y_c=1$  and  $y_i=0$  for all  $i\neq c$ . This simplifies the sum to:

$$L_{CE}(\hat{y},y) = -y_c \log \hat{y}_c$$

Since  $y_c = 1$ , this further reduces to:

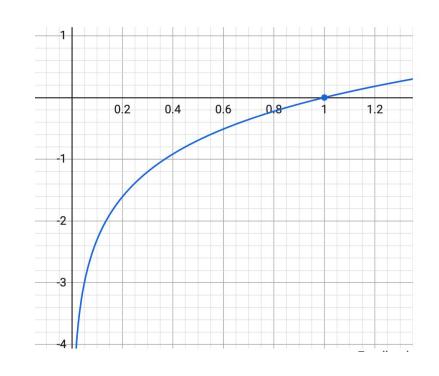
$$L_{CE}(\hat{y},y) = -\log \hat{y}_c$$

The loss models the distance between the system output and the gold output —lower is better

# **Cross-entropy loss (cont'd)**

$$L_{CE}(\hat{y},y) = -\log \hat{y}_c$$

$$\hat{y}_c o 0$$
,  $\log \hat{y}_c o -\infty$ 



- If  $\hat{y}_c = 0.9$ , then  $\log(0.9) pprox -0.105$ , and the loss will be small.
- If  $\hat{y}_c=0.1$ , then  $\log(0.1)pprox-2.302$ , and the loss will be much larger.

# Thank you!