Transformers

CS 4804: Introduction to AI

Fall 2025

https://tuvllms.github.io/ai-fall-2025/

Tu Vu

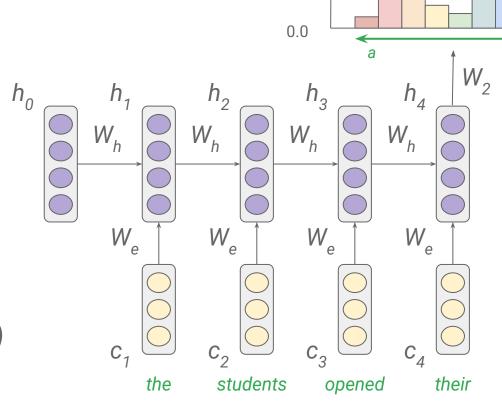
Logistics

- Homework 0 (due September 16th)
 - accuracy
- Quiz 0 (due tomorrow)
 - genuine attempt
- Final project group information (tomorrow)

Recurrent neural networks (RNNs)

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c^t)$$



1.0

books

laptops

*Z*00

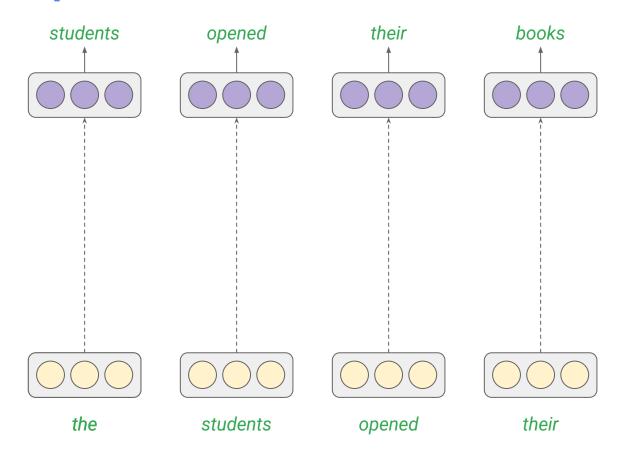
output distribution

$$\hat{y} = softmax(W_2h^{(n-1)})$$

Problems with RNNs

- Bottleneck representation issue
- Lack of parallelism

Seq2Seq



Transformers

Provided proper attribution is provided, Google hereby grants permission to reproduce the tables and figures in this paper solely for use in journalistic or scholarly works.

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

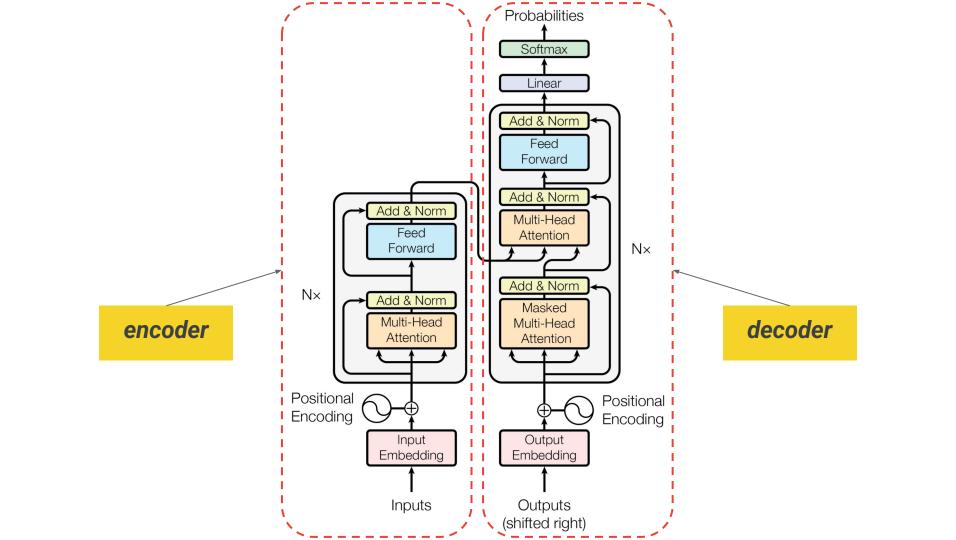
Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

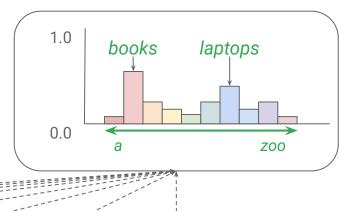
Transformers

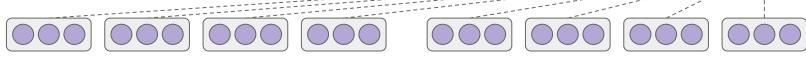
- Before 2017
 - Recurrent neural networks (RNNs)
 - LSTM (Long Short-Term Memory)
 - Convolutional neural networks (CNNs)

- These days
 - Transformers



Machine Translation





les étudiants ont ouvert leurs livres

the students opened their

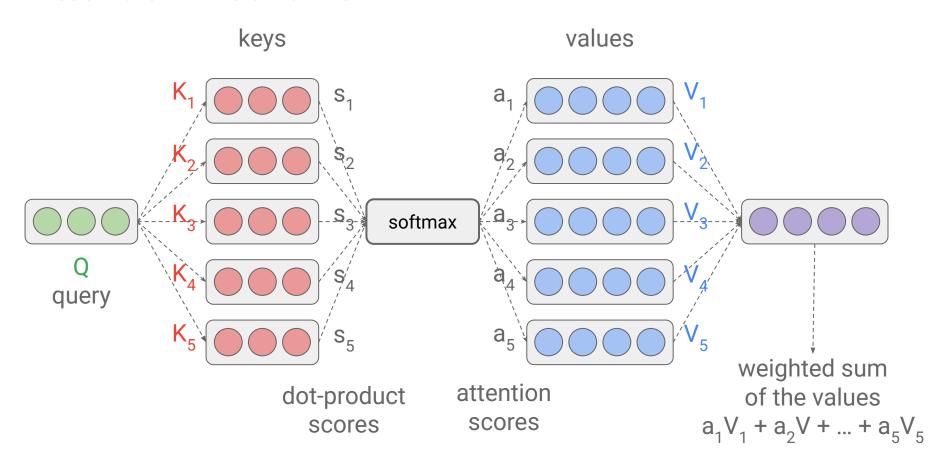
encoder

decoder

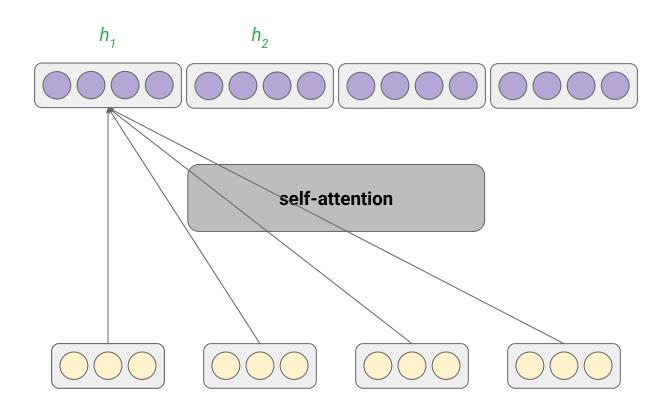
Different model architectures

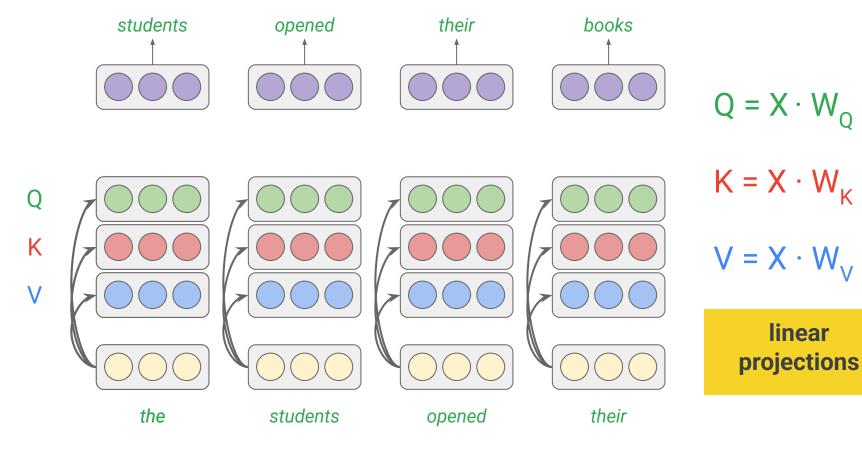
- Encoder-only
 - BERT
- Encoder-decoder
 - o T5
- Decoder-only
 - o GPT

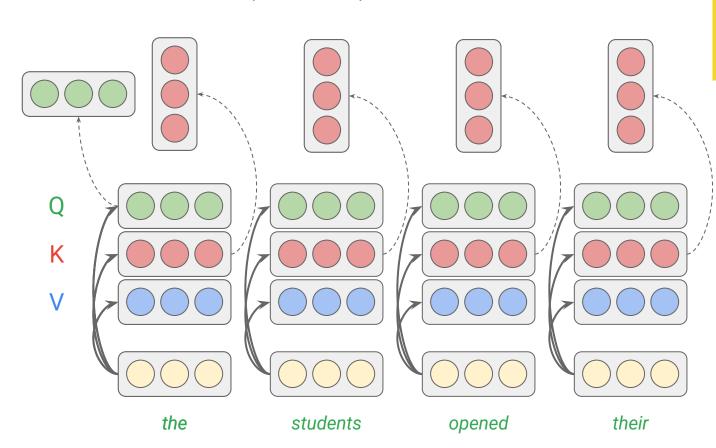
Attention mechanism



Self-attention

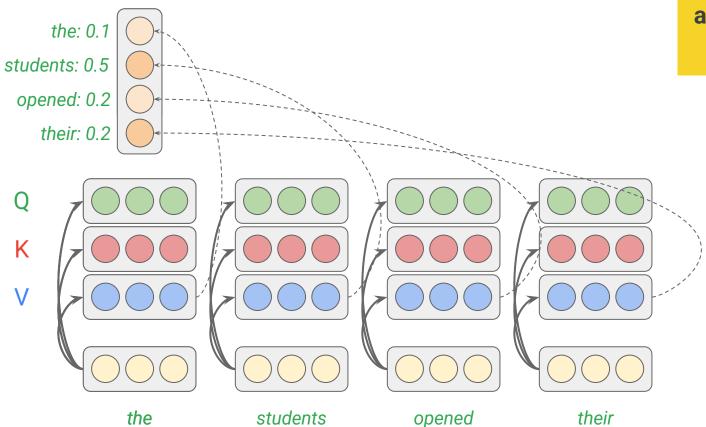




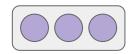


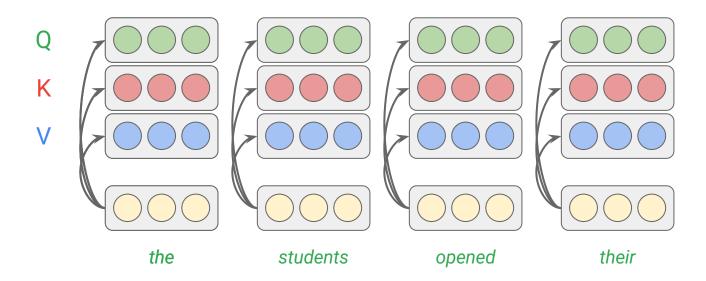
all computations are parallelized

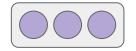
all computations are parallelized

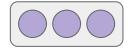


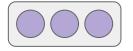
all computations are parallelized

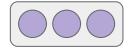




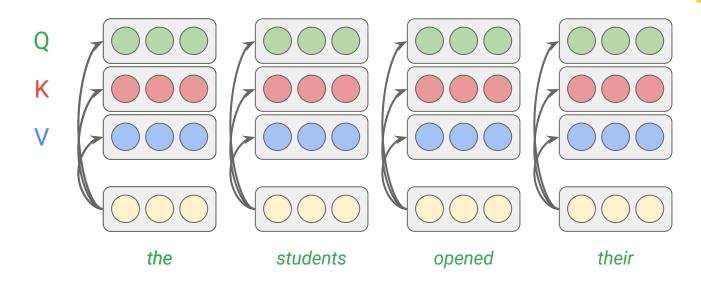








all computations are parallelized during training and sequential during inference



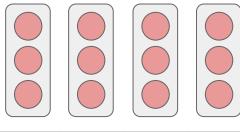
All computations are parallelized

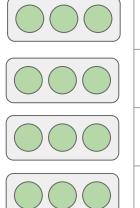
Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^{T}}{\sqrt{d_k}})V$$

d_k: scaling factor

large products push the softmax function into regions where it has extremely small gradients

Quadratic complexity

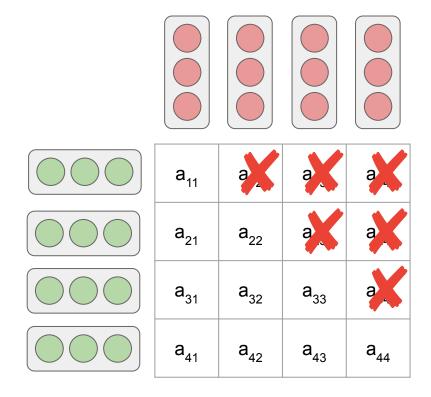




a ₁₁	a ₁₂	a ₁₃	a ₁₄
a ₂₁	a ₂₂	a ₂₃	a ₂₄
a ₃₁	a ₃₂	a ₃₃	a ₃₄
a ₄₁	a ₄₂	a ₄₃	a ₄₄

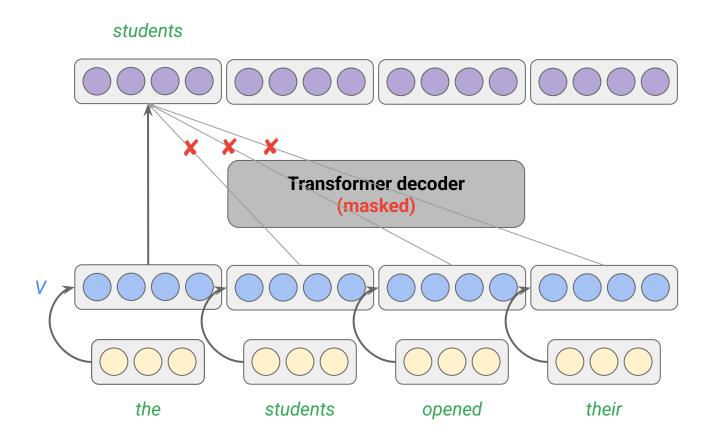
The time complexity of self-attention is quadratic in the input length $O(n^2)$

Self-attention in the decoder

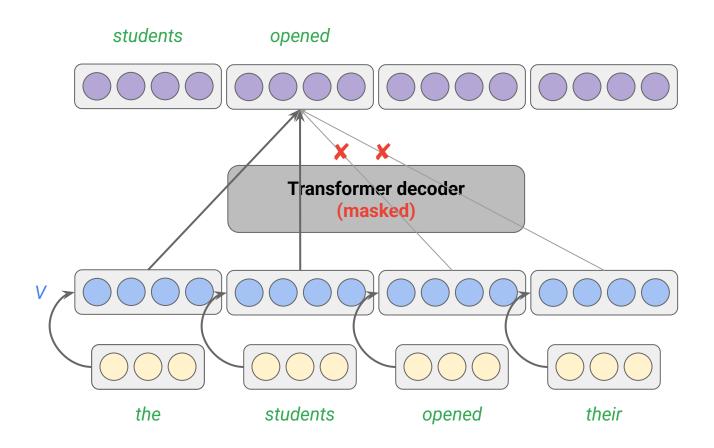


masking out all values in the input of the softmax which correspond to illegal connections

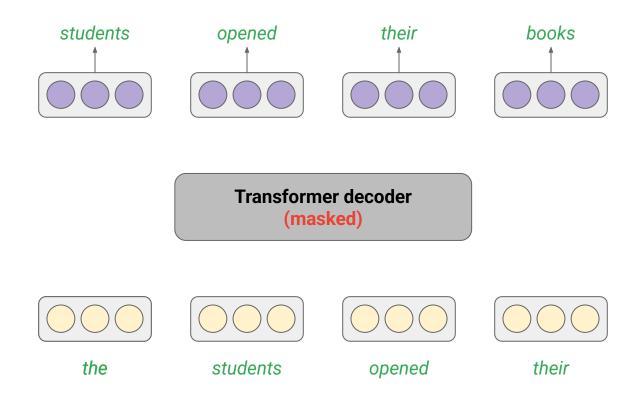
Transformer decoder



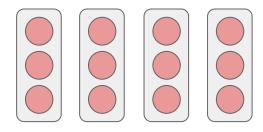
Transformer decoder (cont'd)

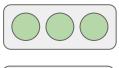


Transformer decoder (cont'd)



Self-attention in the decoder



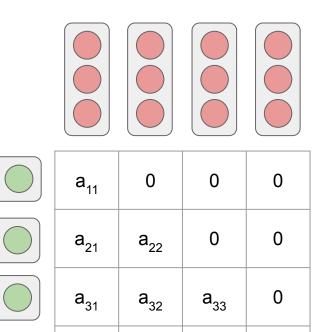


S ₁₁	_∞	_∞	_∞
s ₂₁	s ₂₂	_∞	_∞
S ₃₁	s ₃₂	s ₃₃	_∞
S ₄₁	s ₄₂	s ₄₃	S ₄₄

masking out (setting to -∞) all values in the input of the softmax which correspond to illegal connections

Self-attention in the decoder (cont'd)

a₄₁



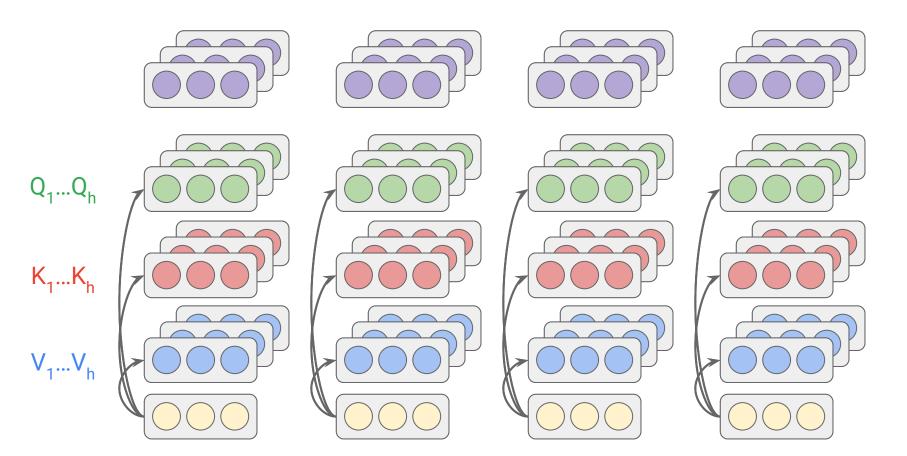
a₄₂

 a_{43}

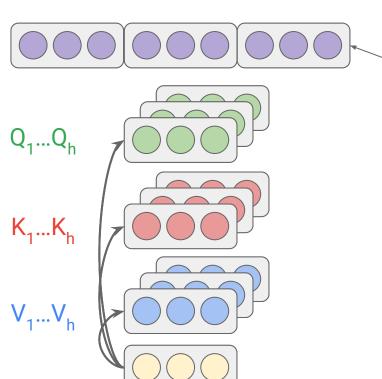
 a_{44}

masking out all values in the input of the softmax which correspond to illegal connections

Multi-head attention

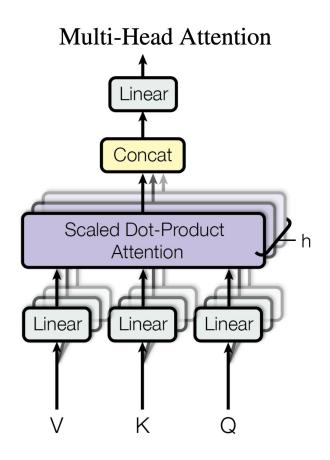


Multi-head attention (cont'd)

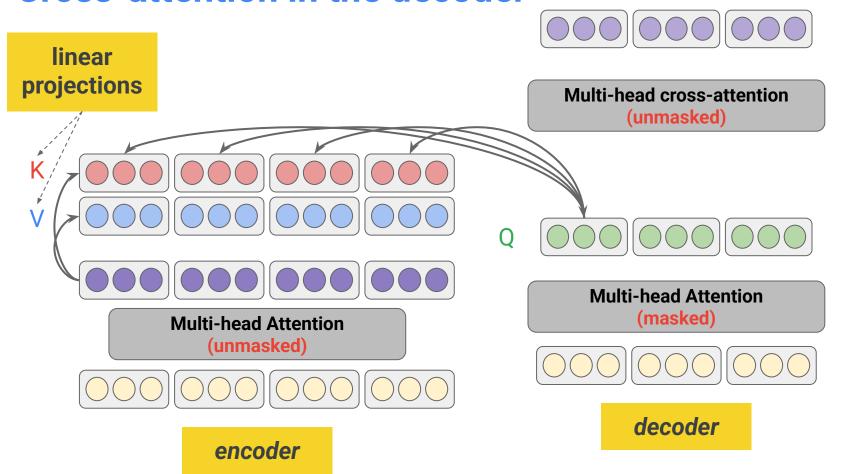


These output values are concatenated and once again projected

Multi-head attention (cont'd)

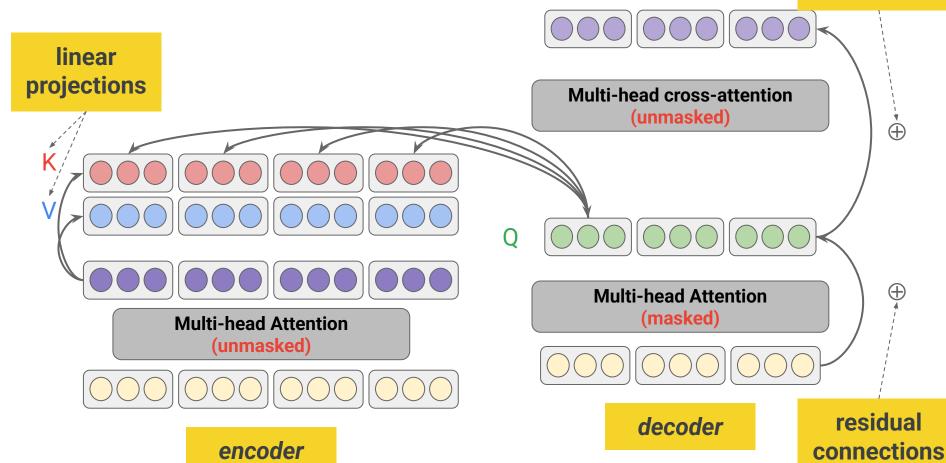


Cross-attention in the decoder

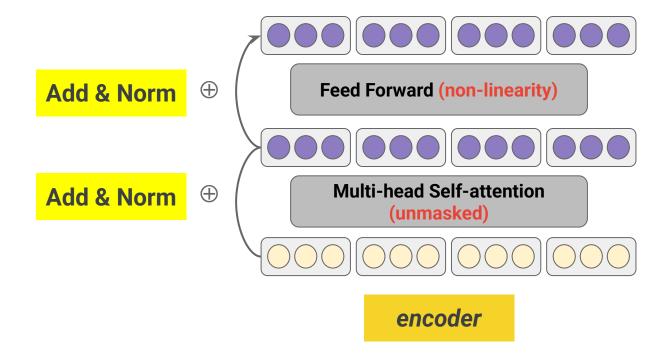


Cross-attention in the decoder (cont'd)

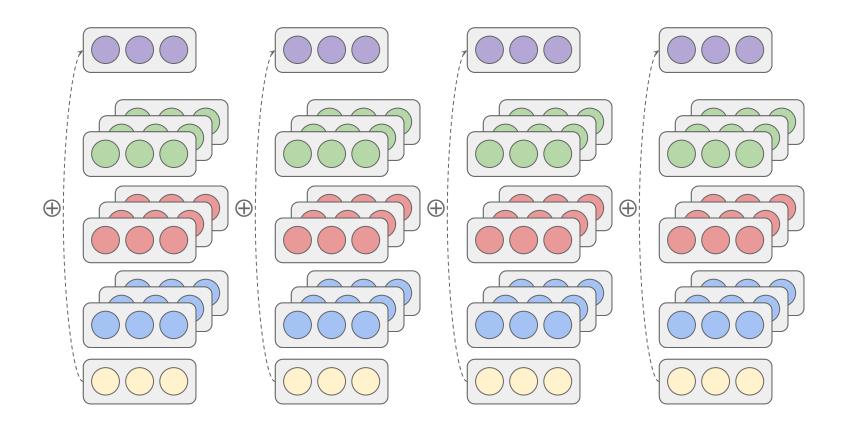
residual connections



Encoder (one layer)



Residual connection



Residual connection

$$output = sublayer(x) + x$$

Layer normalization

$$\operatorname{Norm}(z) = rac{z-\mu}{\sigma} \cdot \gamma + eta$$

where μ and σ are the mean and standard deviation of the activations, and γ, β are learnable parameters.

Each activation vector is normalized so that its components have mean 0 and variance 1. This prevents activations from becoming too large or too small as they propagate through the network.

Residual connection and layer normalization

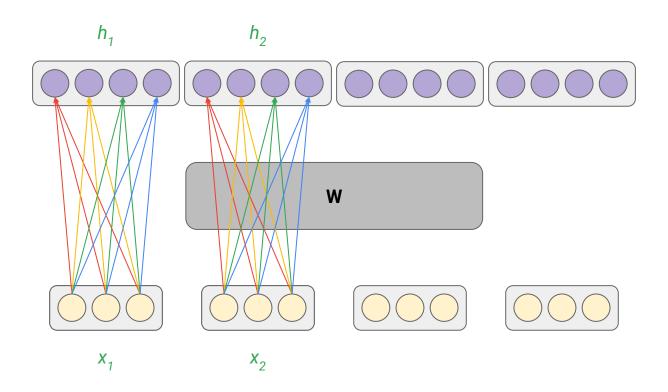
$$LayerNorm(x + Sublayer(x))$$

Position-wise Feed-Forward Networks

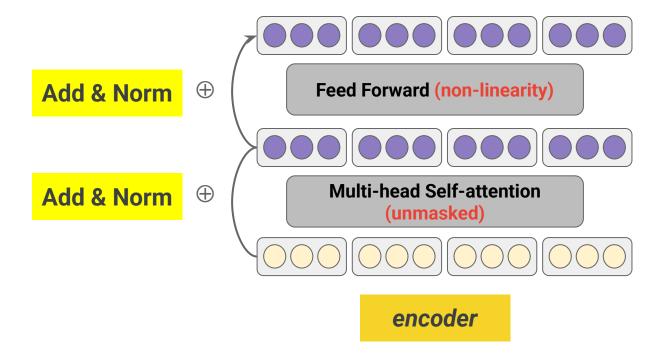
$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

ReLU (Rectified Linear Unit)

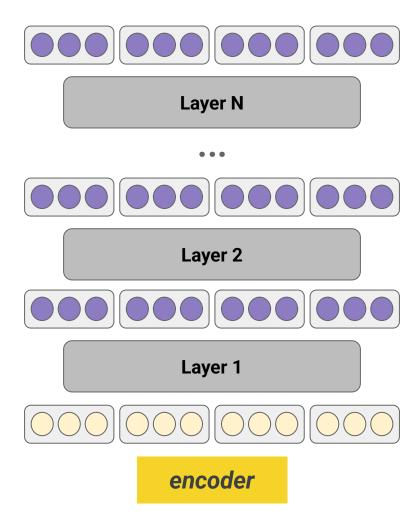
Position-wise Feed-Forward Networks (cont'd)



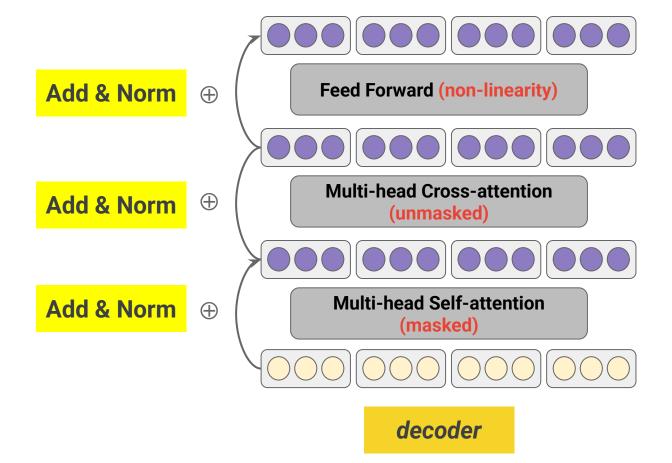
Encoder (one layer)

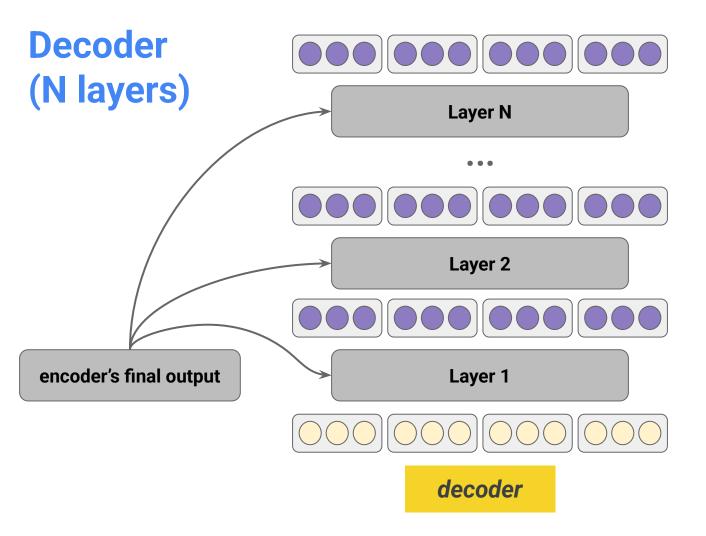


Encoder (N layers)

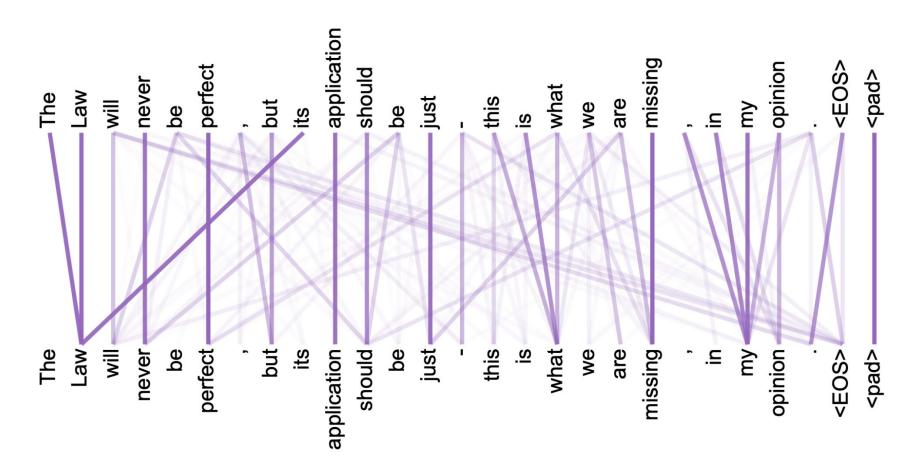


Decoder (one layer)

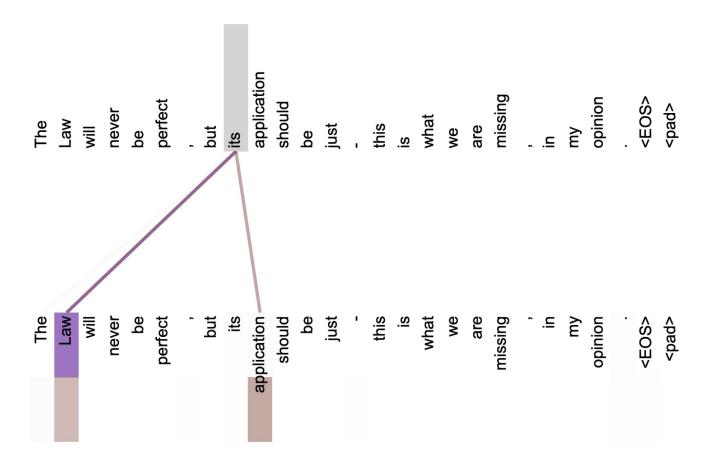




Attention visualizations



Attention visualizations (cont'd)

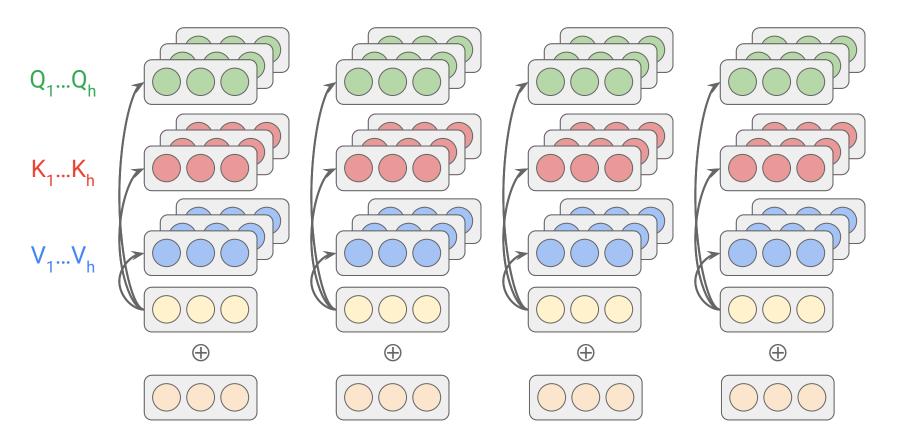


Sinusoidal positional encoding

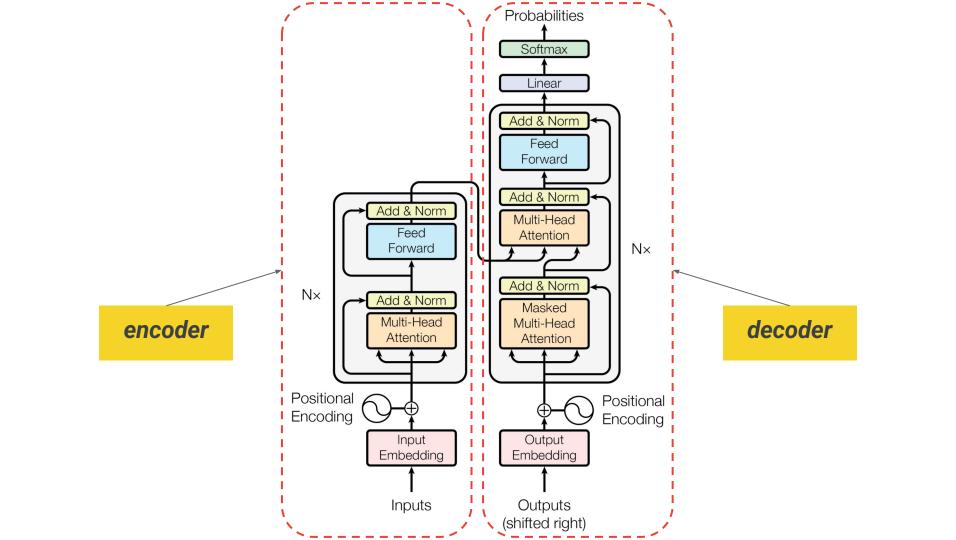
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Positional Encoding (cont'd)



Transformer block (putting it together)



Thank you!