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Logistics

● Homework 0 (due September 16th)
○ accuracy

● Quiz 0 (due tomorrow)
○ genuine attempt

● Final project group information (tomorrow)



Recurrent neural networks (RNNs)
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Problems with RNNs

● Bottleneck representation issue
● Lack of parallelism
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Transformers



Transformers

● Before 2017
○ Recurrent neural networks (RNNs)

■ LSTM (Long Short-Term Memory)
○ Convolutional neural networks (CNNs)

● These days
○ Transformers
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Different model architectures

● Encoder-only
○ BERT

● Encoder-decoder
○ T5

● Decoder-only
○ GPT



Attention mechanism
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Self-attention
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Self-attention (cont’d)
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Self-attention (cont’d)
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Self-attention (cont’d)
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Self-attention (cont’d)
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All computations are parallelized

dk: scaling factor

large products push the softmax 
function into regions where it 
has extremely small gradients



Quadratic complexity

The time complexity of 
self-attention is quadratic in 

the input length O(n2)a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



Self-attention in the decoder
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Transformer decoder

Transformer decoder
(masked)

V

✘ ✘✘

the students opened their

students



Transformer decoder (cont’d)

Transformer decoder
(masked)

students opened

V

✘ ✘

the students opened their



Transformer decoder (cont’d)

thethe students opened their

students opened their books

Transformer decoder
(masked)



Self-attention in the decoder

s11   -∞ -∞ -∞

s21 s22 -∞ -∞

s31 s32 s33 -∞

s41 s42 s43 s44

masking out (setting to 
−∞) all values in the 
input of the softmax 
which correspond to 
illegal connections



Self-attention in the decoder (cont’d)

a11 0 0 0
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masking out all values in 
the input of the softmax 

which correspond to 
illegal connections



Multi-head attention
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Multi-head attention (cont’d)

Q1…Qh

K1…Kh

V1…Vh

These output values 
are concatenated and 
once again projected



Multi-head attention (cont’d)



Cross-attention in the decoder
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Cross-attention in the decoder (cont’d)
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Encoder (one layer)
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Residual connection
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Residual connection



Layer normalization

Each activation vector is normalized so that its 
components have mean 0 and variance 1. This 

prevents activations from becoming too large or too 
small as they propagate through the network.



Residual connection and layer normalization



Position-wise Feed-Forward Networks

ReLU (Rectified 
Linear Unit)



Position-wise Feed-Forward Networks (cont’d)
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Encoder (one layer)
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Decoder (one layer)
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Attention visualizations



Attention visualizations (cont’d)



Sinusoidal positional encoding



Positional Encoding (cont’d)
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Transformer block (putting it together)



encoder decoder



Thank you!


