# **Transformers (cont'd)**

**CS 4804: Introduction to AI** 

Fall 2025

https://tuvllms.github.io/ai-fall-2025/

Tu Vu



### Logistics

- Homework 0 (due today)
- Final project groups finalized
  - Project proposal template released today (due in 3 weeks)
  - Project research ideas
    - Check out <u>GPT-5 System Card</u> & <u>Gemini 2.5 Pro Technical</u> <u>Report</u>
    - New benchmarks
    - New prompting methods
    - Improving small models

• • •

#### **Useful libraries**

- Hugging Face (<a href="https://huggingface.co">https://huggingface.co</a>)
  - Transformers
  - Models / Datasets
- Unsloth (<a href="https://unsloth.ai">https://unsloth.ai</a>)
  - Efficient fine-tuning
- vLLM (<a href="https://github.com/vllm-project/vllm">https://github.com/vllm-project/vllm</a>)
  - Efficient inference
- Together.Al
  - APIs for Open-weight models







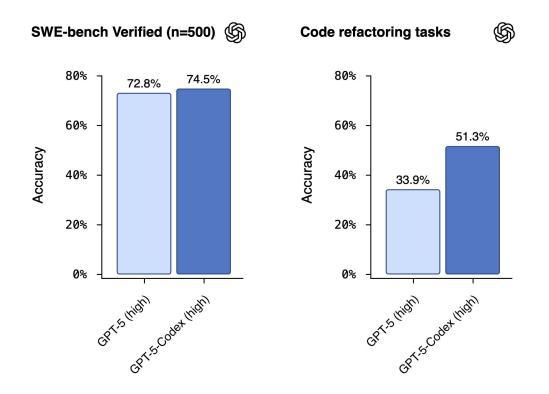
together.ai

#### **Al News**

- Google's Nano Banana
  - restore old photos
  - try out different hairstyles
  - imagine yourselves as 3D model figurines

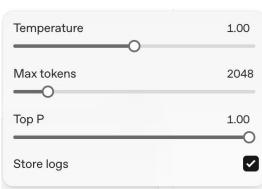
#### Al News (cont'd)

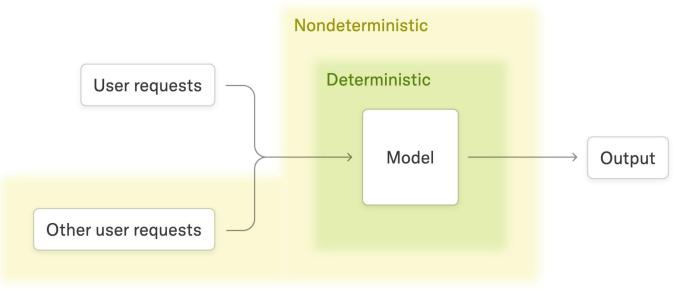
OpenAl's GPT-5-Codex: GPT-5 optimized for agentic coding

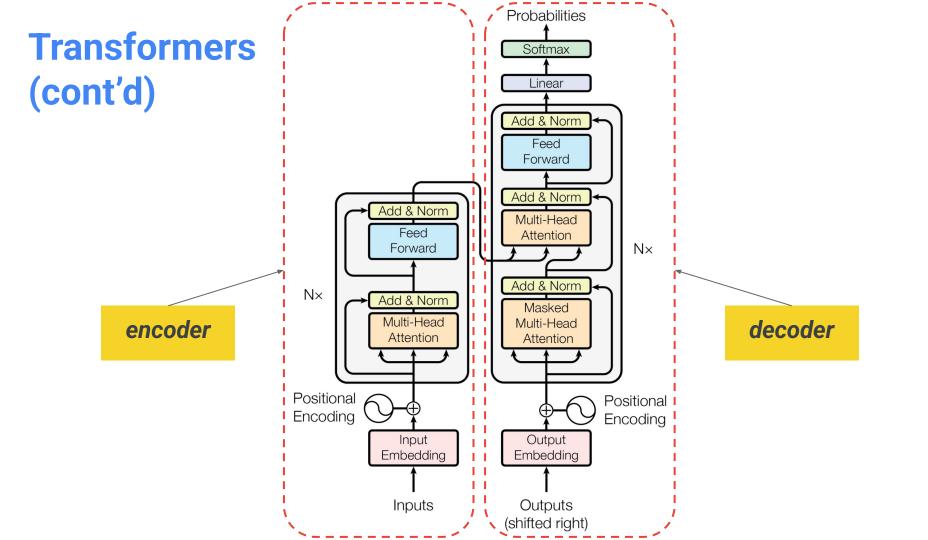


## Al News (cont'd): Thinking Machines

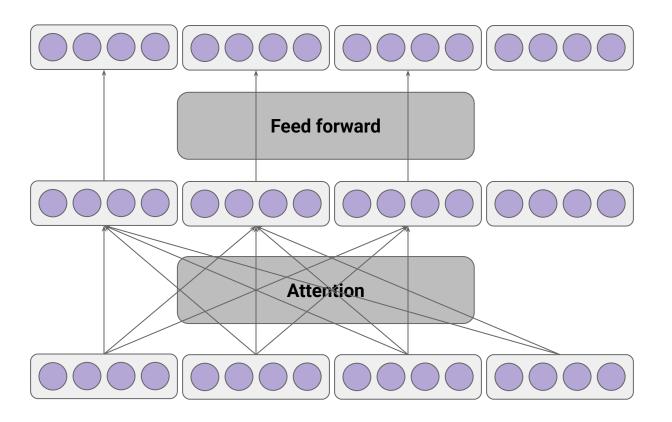
Defeating Nondeterminism in LLM Inference



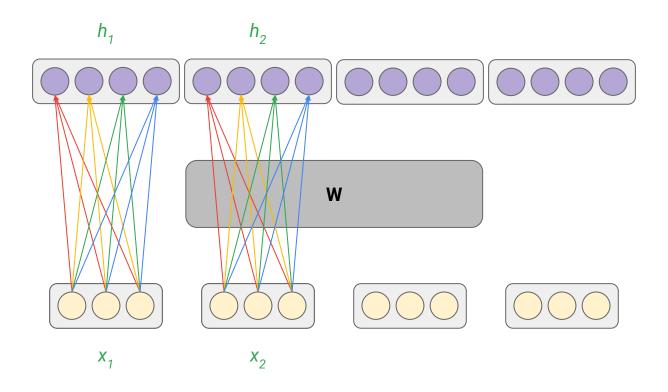




#### **Encoder**



#### **Position-wise Feed-Forward Networks**



We multiply the weight matrix W (size  $4 \times 3$ ) with the embeddings matrix X (size  $3 \times 2$ ):

$$H = WX$$

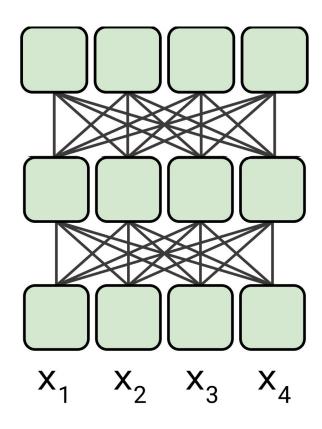
Performing the multiplication:

This results in:

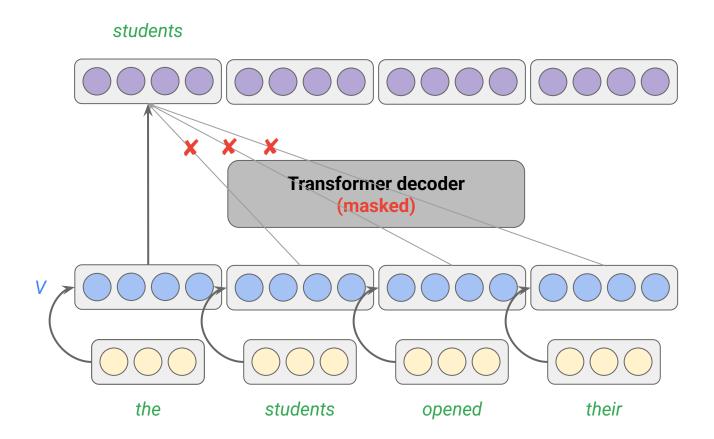
$$H = egin{bmatrix} w_{11} & w_{12} & w_{13} \ w_{21} & w_{22} & w_{23} \ w_{31} & w_{32} & w_{33} \ w_{41} & w_{42} & w_{43} \end{bmatrix} egin{bmatrix} x_{11} & x_{21} \ x_{12} & x_{22} \ x_{13} & x_{23} \end{bmatrix}$$

$$H = egin{bmatrix} w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} \ w_{21}x_{11} + w_{22}x_{12} + w_{23}x_{13} \ w_{31}x_{11} + w_{32}x_{12} + w_{33}x_{13} \ w_{41}x_{11} + w_{42}x_{12} + w_{43}x_{13} \end{pmatrix} egin{bmatrix} w_{11}x_{21} + w_{12}x_{22} + w_{13}x_{23} \ w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} \ w_{31}x_{21} + w_{32}x_{22} + w_{33}x_{23} \ w_{41}x_{21} + w_{42}x_{22} + w_{43}x_{23} \end{pmatrix}$$

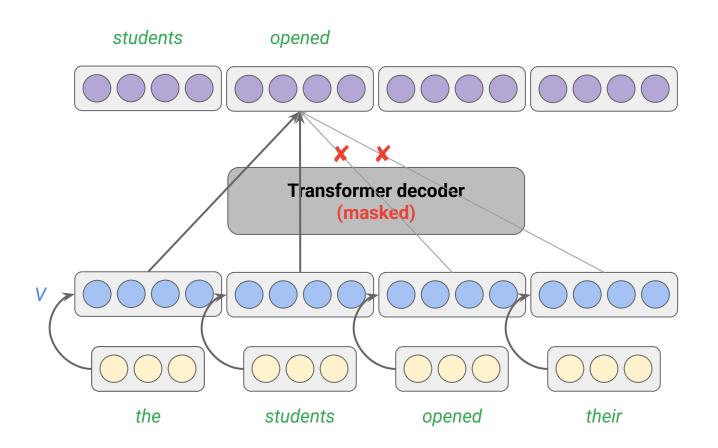
## **Encoder (cont'd)**



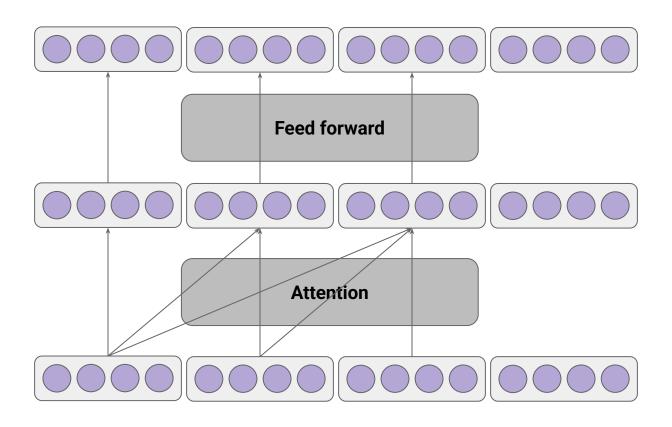
#### **Decoder**



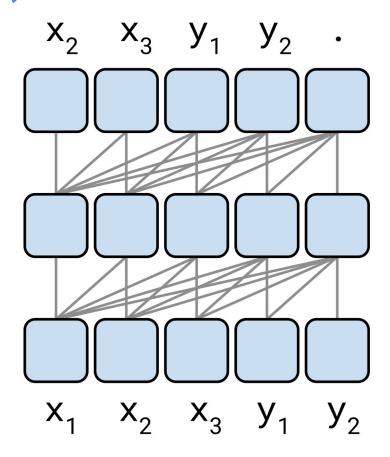
## **Decoder (cont'd)**



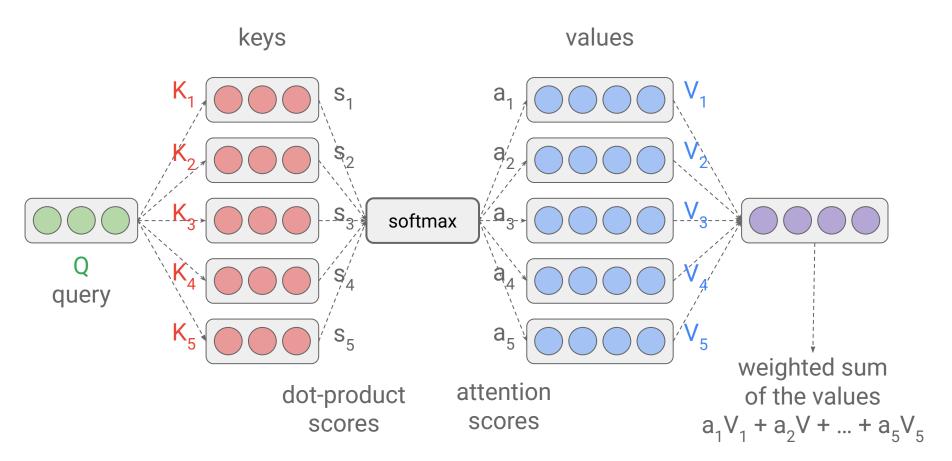
## **Decoder (cont'd)**



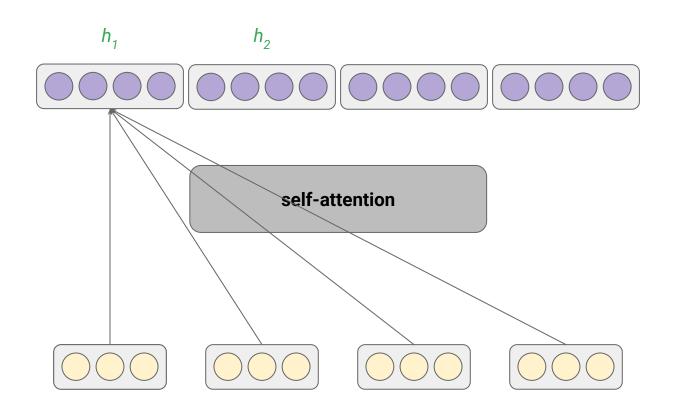
## **Decoder (cont'd)**

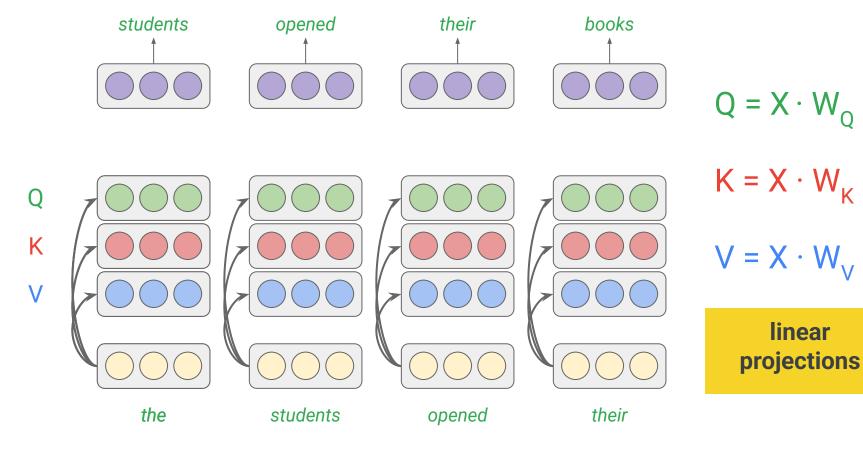


#### **Attention mechanism**



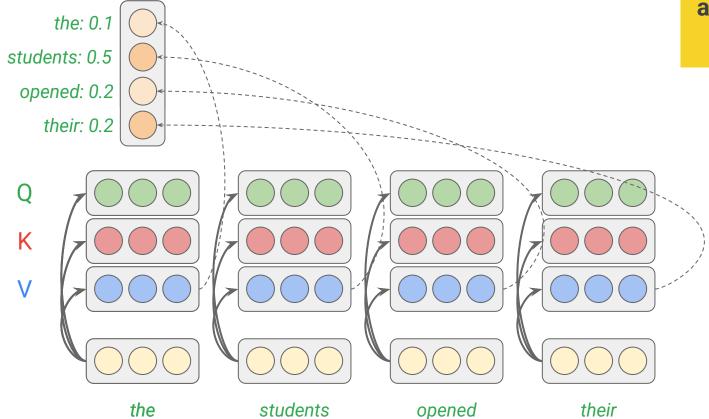
#### **Self-attention**



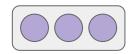


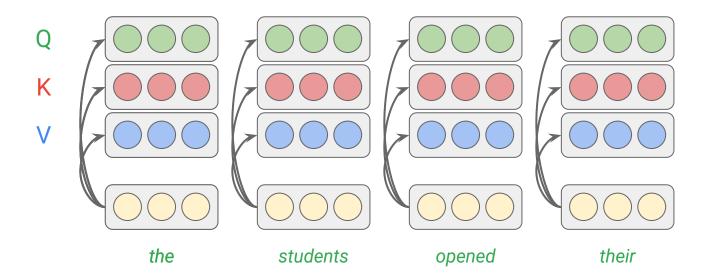
Q K V opened the students their all computations are parallelized

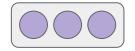
all computations are parallelized

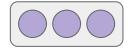


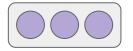
all computations are parallelized





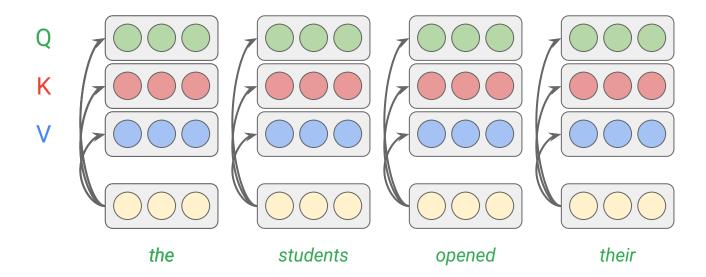




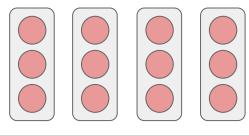


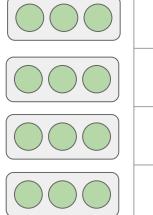


all computations are parallelized during training and sequential during inference



## **Quadratic complexity**

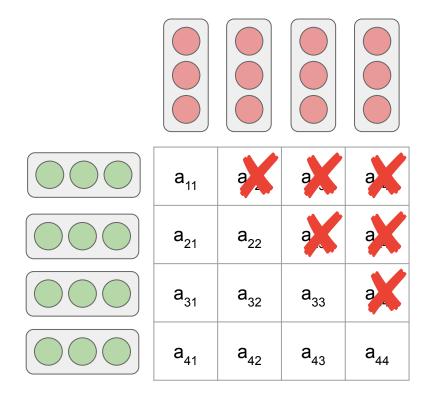




| a <sub>11</sub>        | a <sub>12</sub> | a <sub>13</sub> | a <sub>14</sub> |
|------------------------|-----------------|-----------------|-----------------|
| a <sub>21</sub>        | a <sub>22</sub> | a <sub>23</sub> | a <sub>24</sub> |
| <b>a</b> <sub>31</sub> | a <sub>32</sub> | a <sub>33</sub> | a <sub>34</sub> |
| a <sub>41</sub>        | a <sub>42</sub> | a <sub>43</sub> | a <sub>44</sub> |

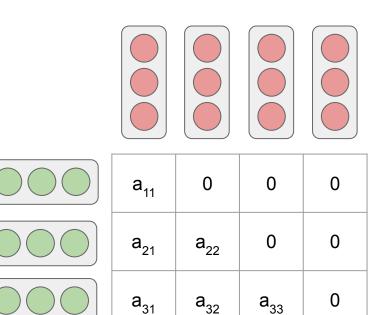
The time complexity of self-attention is quadratic in the input length  $O(n^2)$ 

#### Self-attention in the decoder



masking out all values in the input of the softmax which correspond to illegal connections

### Self-attention in the decoder (cont'd)



a<sub>42</sub>

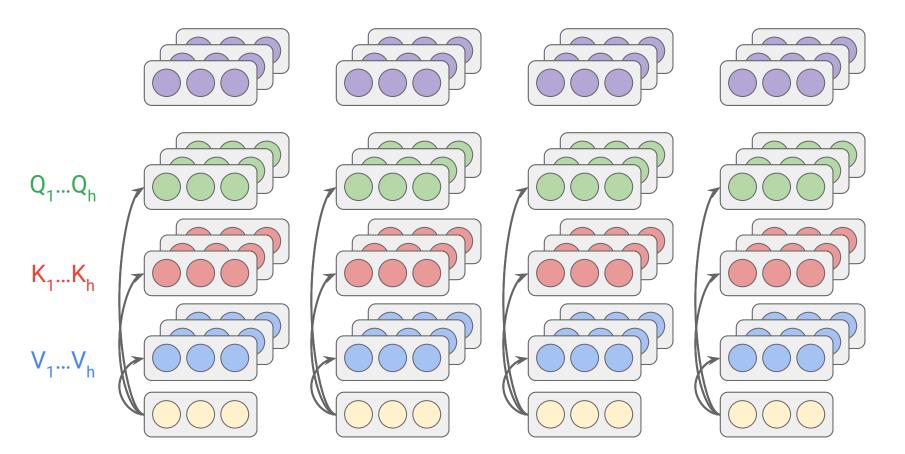
 $a_{43}$ 

 $a_{44}$ 

a<sub>41</sub>

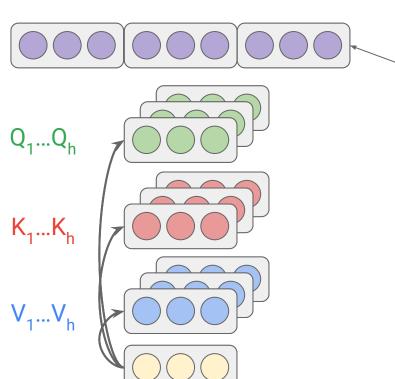
masking out all values in the input of the softmax which correspond to illegal connections

#### **Multi-head attention**



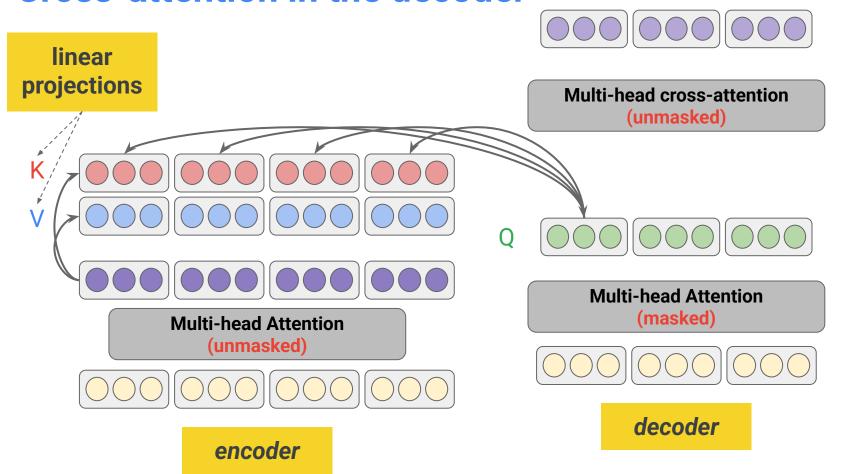
### Multi-head attention (cont'd)





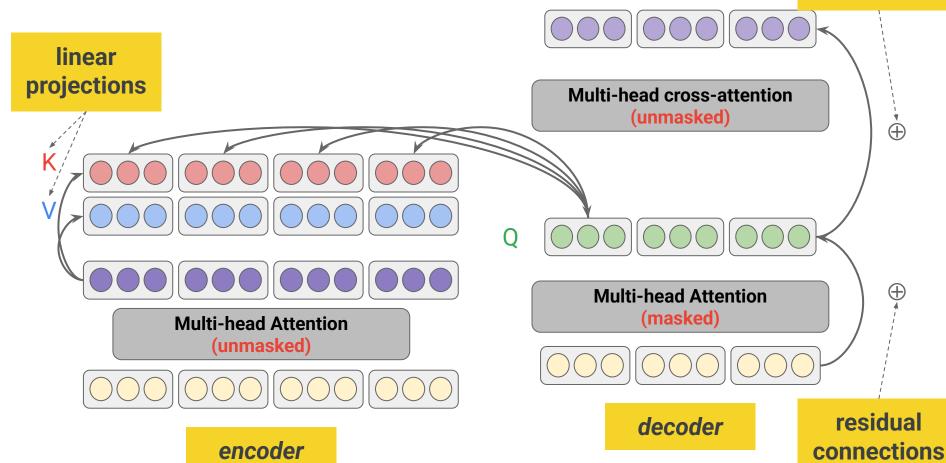
These output values are concatenated and once again projected

#### **Cross-attention in the decoder**

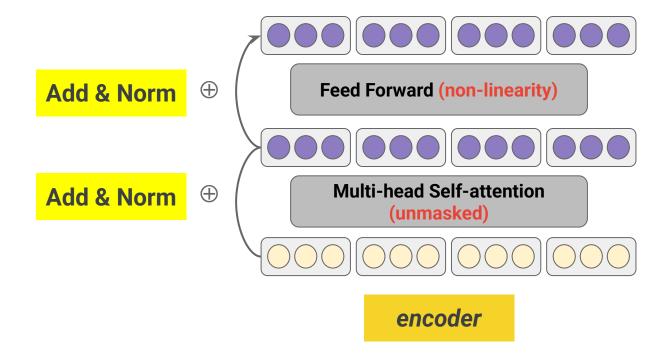


## **Cross-attention in the decoder (cont'd)**

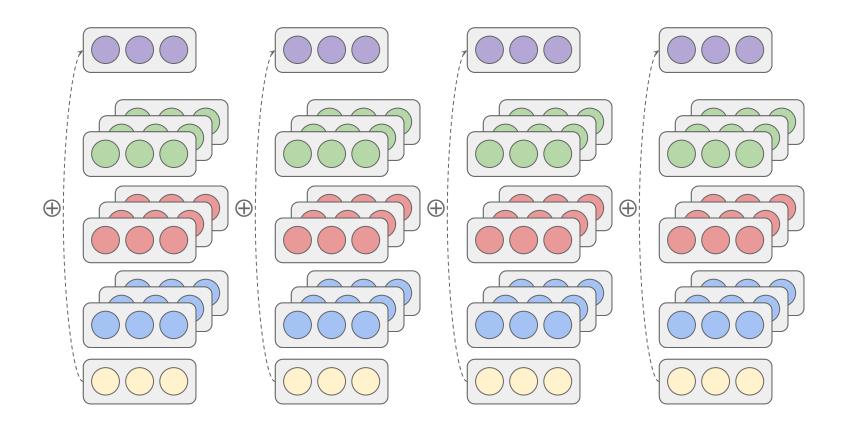
residual connections



### **Encoder (one layer)**



#### **Residual connection**



#### **Residual connection**

$$output = sublayer(x) + x$$

#### **Layer normalization**

$$\operatorname{Norm}(z) = rac{z-\mu}{\sigma} \cdot \gamma + eta$$

where  $\mu$  and  $\sigma$  are the mean and standard deviation of the activations, and  $\gamma, \beta$  are learnable parameters.

Each activation vector is normalized so that its components have mean 0 and variance 1. This prevents activations from becoming too large or too small as they propagate through the network.

#### Residual connection and layer normalization

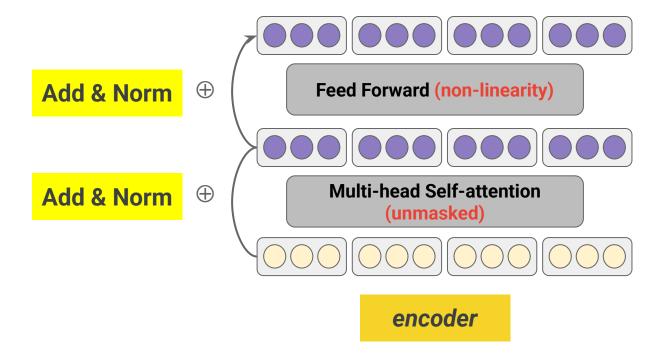
$$LayerNorm(x + Sublayer(x))$$

#### **Position-wise Feed-Forward Networks**

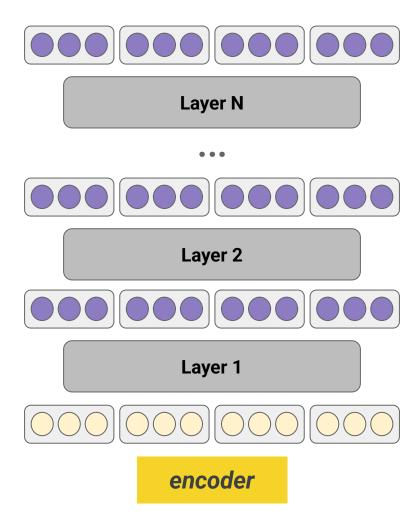
$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

ReLU (Rectified Linear Unit)

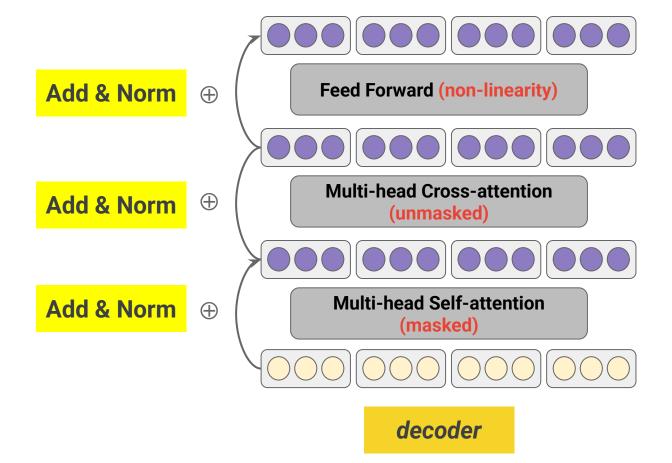
### **Encoder (one layer)**

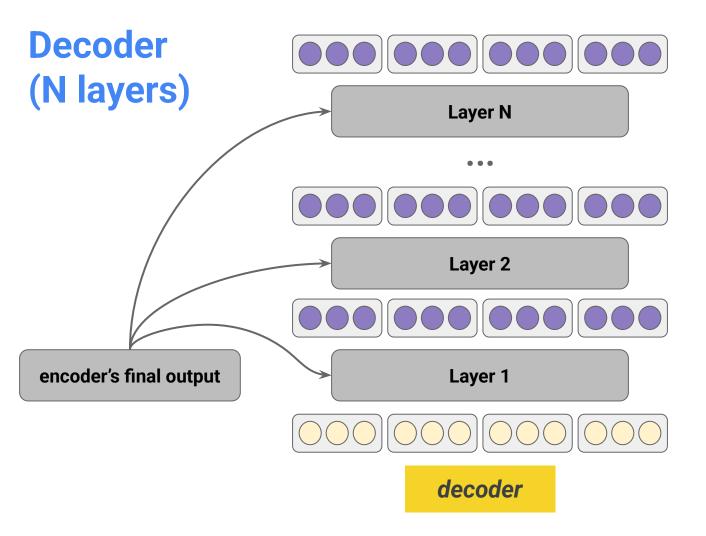


# **Encoder** (N layers)

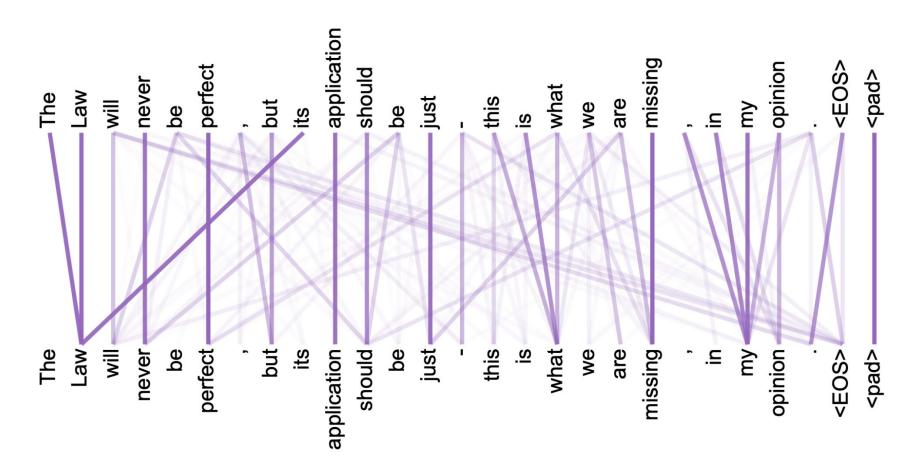


# **Decoder (one layer)**

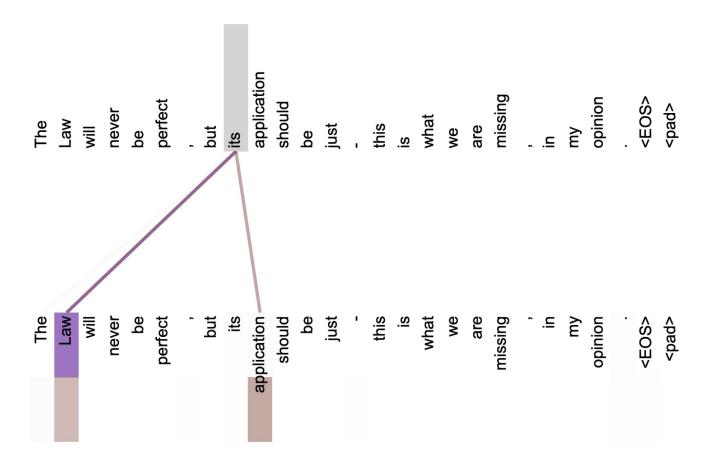




#### **Attention visualizations**



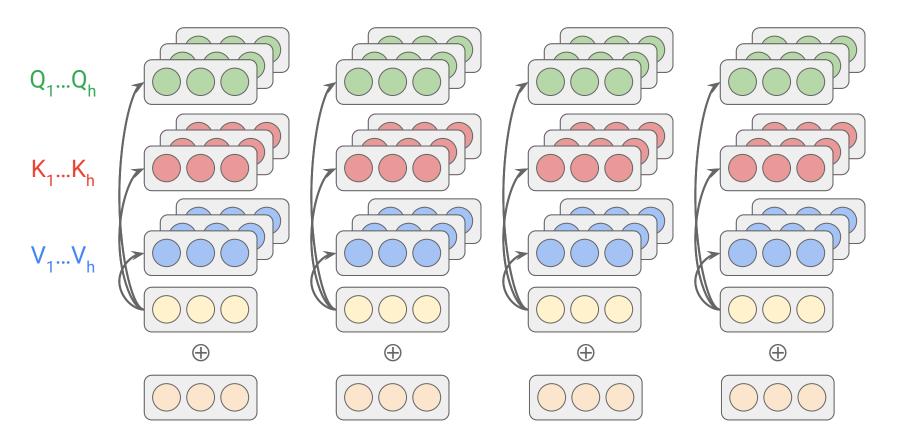
#### **Attention visualizations (cont'd)**

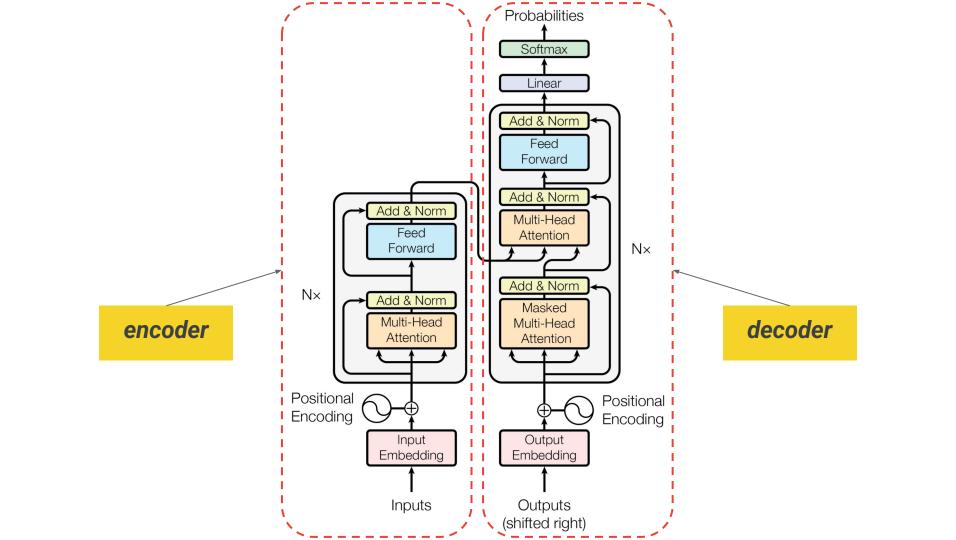


#### Sinusoidal positional encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$
  
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$ 

# **Positional Encoding (cont'd)**





#### **Different model architectures**

- Encoder-only
  - BERT
- Encoder-decoder
  - o T5
- Decoder-only
  - o GPT



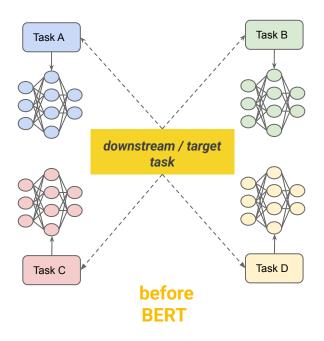
#### BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

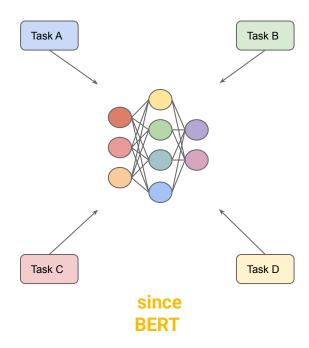
## A learning paradigm shift

# training task-specific models from scratch





#### pretraining and then adapting







#### **Deep contextualized word representations**

Matthew E. Peters<sup>†</sup>, Mark Neumann<sup>†</sup>, Mohit Iyyer<sup>†</sup>, Matt Gardner<sup>†</sup>, {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark\*, Kenton Lee\*, Luke Zettlemoyer<sup>†\*</sup> {csquared, kentonl, lsz}@cs.washington.edu

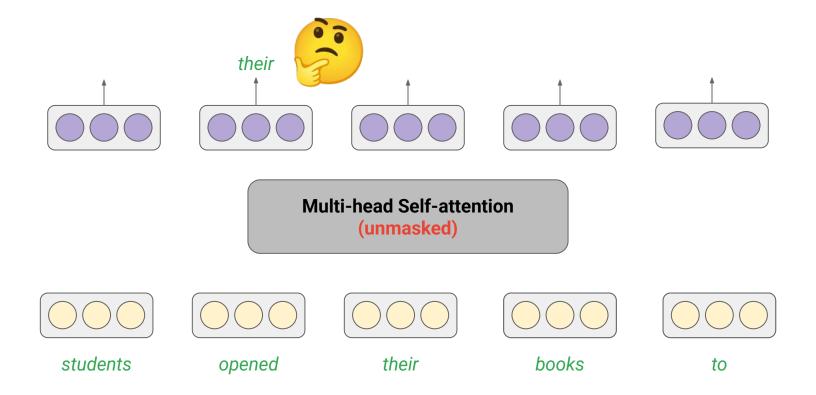
<sup>†</sup>Allen Institute for Artificial Intelligence \*Paul G. Allen School of Computer Science & Engineering, University of Washington

#### **BERT vs. ELMo**

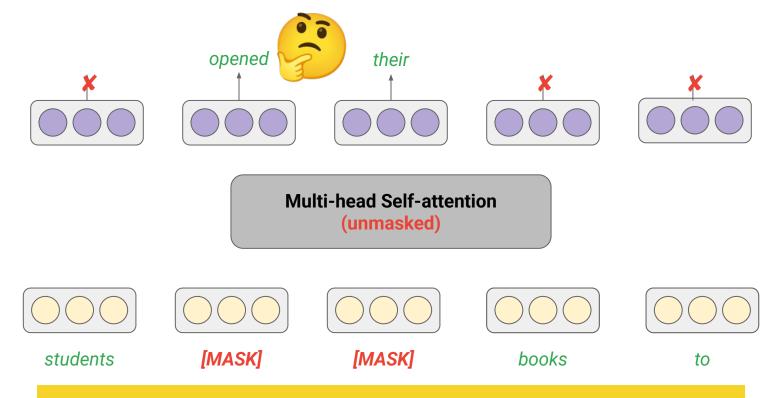
|                           | BERT                                                      | ELMo                                                                                      |
|---------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Model                     | Transformers                                              | Bidirectional LSTM (Long<br>Short-Term Memory, a<br>variant of RNN)                       |
| Pre-training objective(s) | Masked language<br>modeling + next sentence<br>prediction | Left-to-right language modeling                                                           |
| Adaptation method         | Fine-tuning                                               | Feature-based (pretrained representations as additional features to task-specific models) |

# **Pretraining**

#### Language modeling using a Transformer encoder

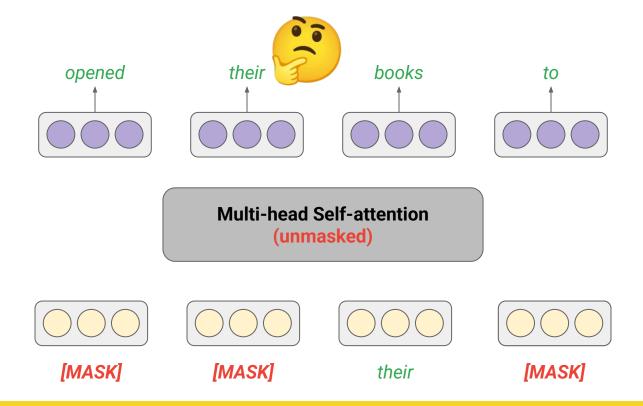


## Masked language modeling



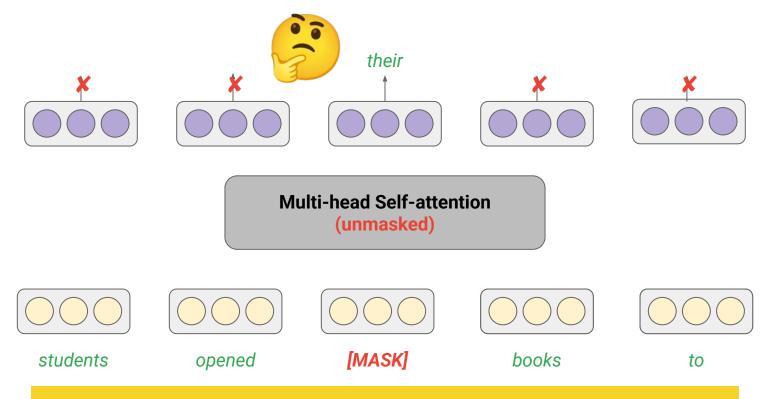
15% - 30% of all tokens in each sequence are masked at random

#### What if we mask more tokens?



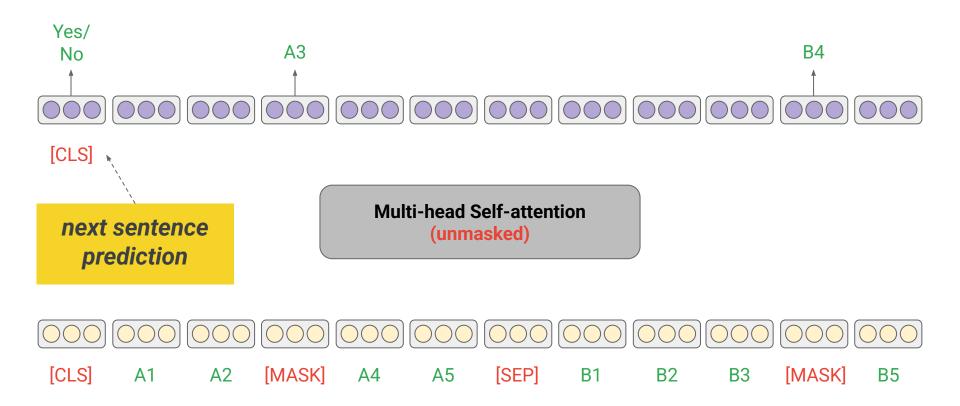
15% - 30% of all tokens in each sequence are masked at random

#### What if we mask less tokens?

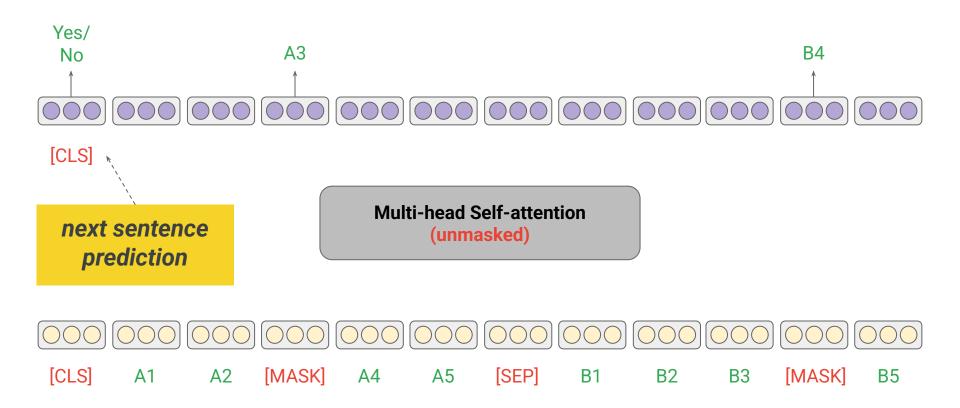


15% - 30% of all tokens in each sequence are masked at random

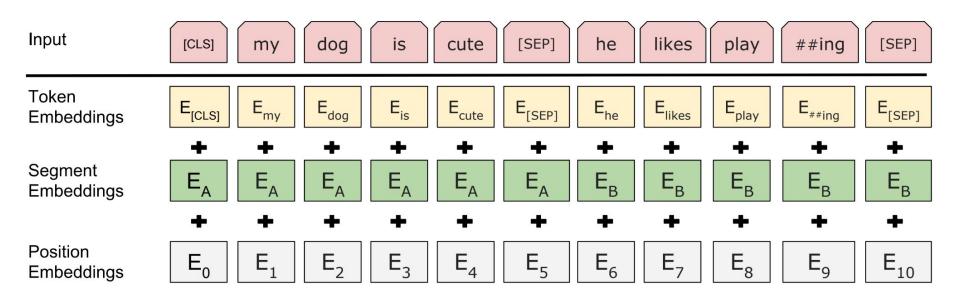
#### **CLS & SEP tokens**



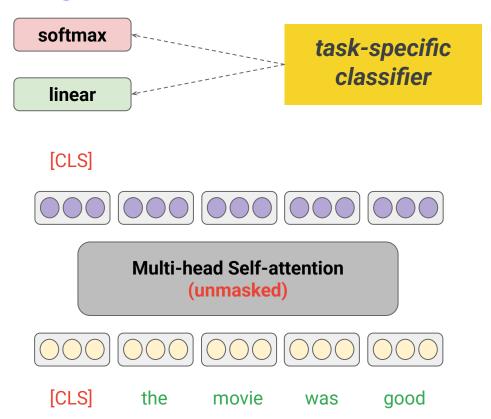
#### **BERT Pretraining**



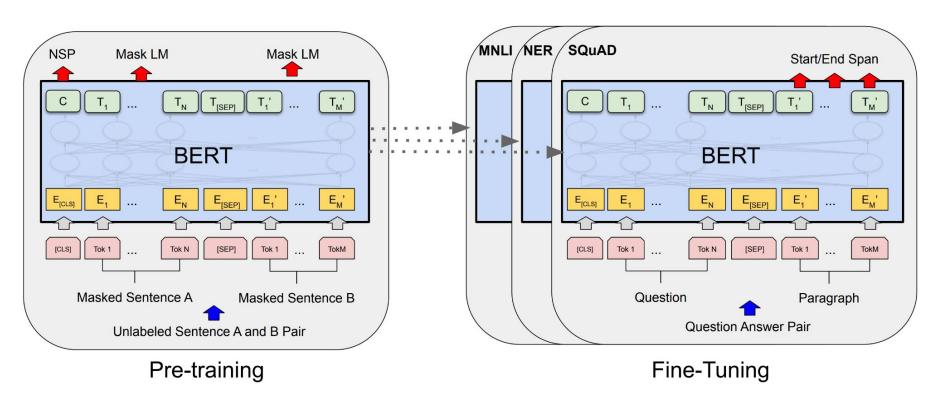
#### **BERT** input representation



### **BERT Fine-tuning**

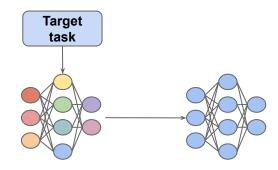


# **BERT Pretraining & Fine-tuning**



# Intermediate-task transfer / fine-tuning

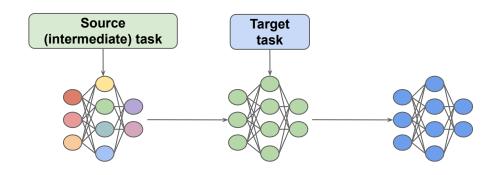
**Standard Fine-tuning** 



**BERT**BASE  $\rightarrow$  **RTE**:  $63.5 \pm 2.3$ 

**BERT**LARGE  $\rightarrow$  **RTE**:  $68.6 \pm 7.2$ 

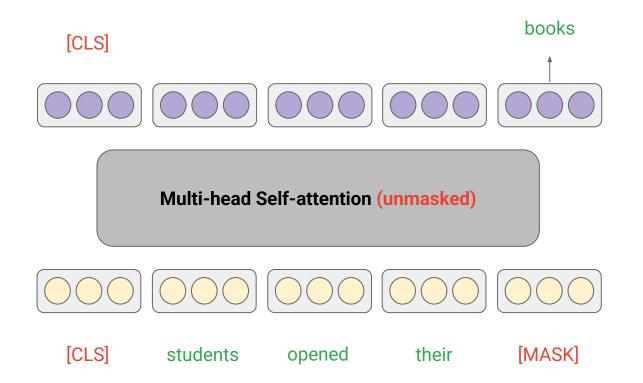
Intermediate-task transfer



**BERT**BASE  $\rightarrow$  MNLI  $\rightarrow$  RTE: 78.1  $\pm$  1.9

BERTLARGE  $\rightarrow$  MNLI  $\rightarrow$  RTE: 82.3  $\pm$  1.4

#### Can BERT be used for text generation?



iterative masking and unmasking

#### **T5: Text-to-Text Transfer Transformer**

# Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel\*

CRAFFEL@GMAIL.COM

Noam Shazeer\*

NOAM@GOOGLE.COM

Adam Roberts\*

ADAROB@GOOGLE.COM

Katherine Lee\*

KATHERINELEE@GOOGLE.COM

**Sharan Narang** 

SHARANNARANG@GOOGLE.COM

Michael Matena

MMATENA@GOOGLE.COM

Yanqi Zhou

YANQIZ@GOOGLE.COM

Wei Li

MWEILI@GOOGLE.COM

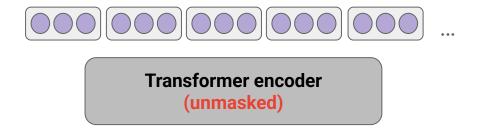
Peter J. Liu

PETERJLIU@GOOGLE.COM

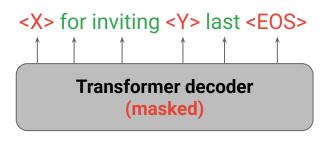
Google, Mountain View, CA 94043, USA

### **T5 Pretraining: Span corruption**

<X>, <Y>: sentinel tokens



Thank you **<X>** me to your party **<Y>** week



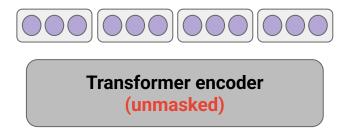
<BOS> <X> for inviting <Y> last

Thank you for inviting me to your party last week

encoder

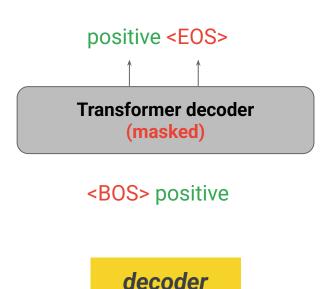
decoder

#### **T5 Fine-tuning**

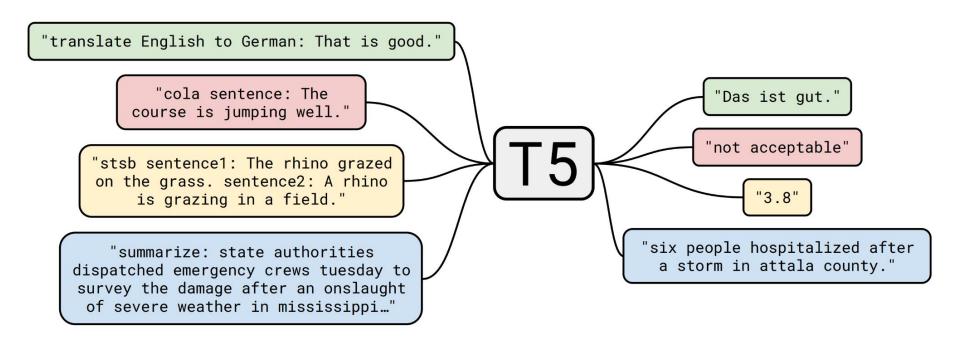


sentiment analysis: this movie was good

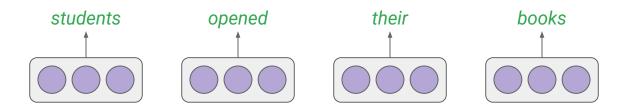
encoder



#### T5 facilitates multitask learning

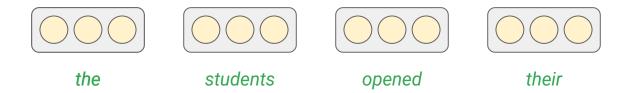


### **Decoder-only model**



the architecture used in frontier LLMs

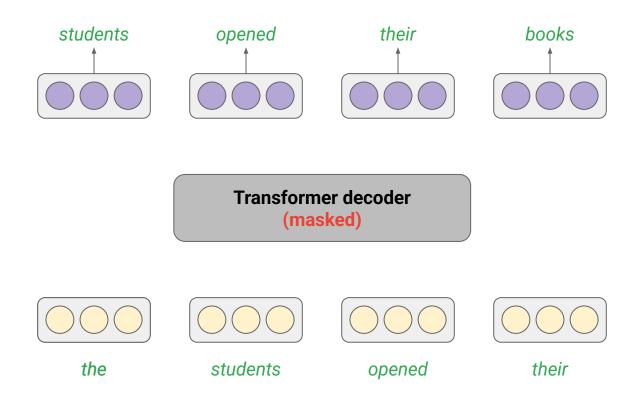
Transformer decoder (masked)



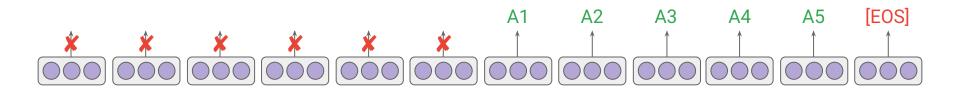
#### **Note on cross-attention**

 Can be used to inject non-text data (e.g., images, structured data, or even sensor readings) into the model

### Pretraining with a causal LM (decoder-only)



#### Training with prefix LM (decoder-only)



the architecture used in frontier LLMs

**Transformer decoder** 

(partially masked)



[PAD]

[PAD]

P1

P2

P3

P4

[SEP]

A1

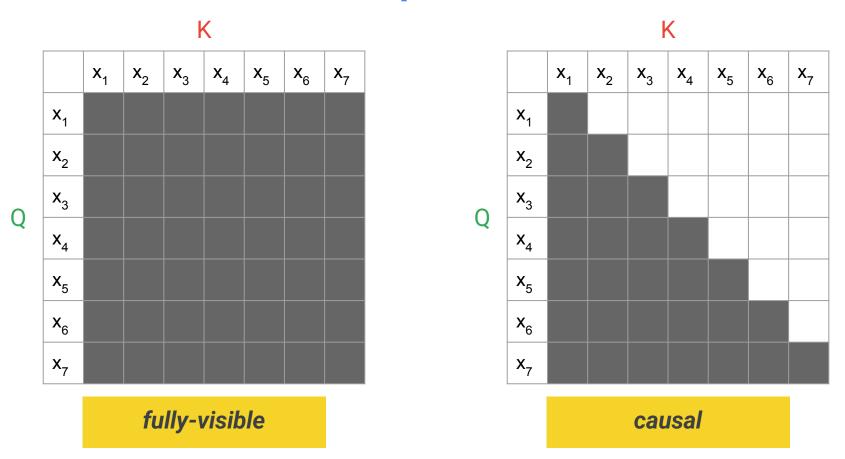
A2

**A3** 

A4

A5

# **Different attention mask patterns**

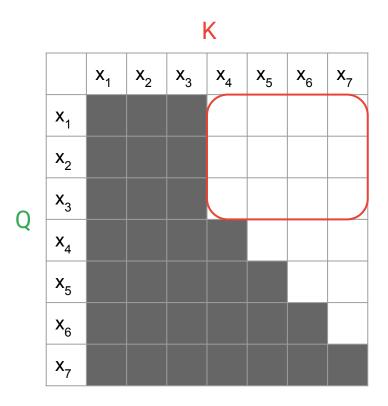


#### Different attention mask patterns (cont'd)

K  $X_1$  $X_2$  $X_3$  $X_{\underline{A}}$  $X_5$ **X**<sub>7</sub>  $X_2$  $X_3$  $X_4$  $X_5$  $X_6$ **X**<sub>7</sub>

**Prefix LM** 

#### Different attention mask patterns (cont'd)



Why masking here?

# Thank you!