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CS 4804: Introduction to AI
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https://tuvllms.github.io/ai-fall-2025/

Transformers (cont’d)

https://tuvllms.github.io/ai-fall-2025/


Logistics
● Homework 0 (due today)
● Final project groups finalized

○ Project proposal template released today (due in 3 weeks)

○ Project research ideas
■ Check out GPT-5 System Card & Gemini 2.5 Pro Technical 

Report
■ New benchmarks
■ New prompting methods
■ Improving small models

…

https://cdn.openai.com/gpt-5-system-card.pdf
https://arxiv.org/pdf/2507.06261
https://arxiv.org/pdf/2507.06261


Useful libraries

● Hugging Face (https://huggingface.co)
○ Transformers
○ Models / Datasets

● Unsloth (https://unsloth.ai)
○ Efficient fine-tuning

● vLLM (https://github.com/vllm-project/vllm)
○ Efficient inference

● Together.AI
○ APIs for Open-weight models

https://huggingface.co
https://unsloth.ai
https://github.com/vllm-project/vllm
http://together.ai


AI News

● Google’s Nano Banana 
○ restore old photos 
○ try out different hairstyles 
○ imagine yourselves as 3D model figurines

https://aistudio.google.com/models/gemini-2-5-flash-image
https://x.com/GeminiApp/status/1960347483021959197
https://x.com/GeminiApp/status/1960344916930036105
https://x.com/GeminiApp/status/1962647019090256101


AI News (cont’d)

● OpenAI’s GPT‑5-Codex: GPT‑5 optimized for agentic coding

https://openai.com/index/introducing-upgrades-to-codex/


AI News (cont’d): Thinking Machines
● Defeating Nondeterminism in LLM Inference

https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/


Transformers 
(cont’d)
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Decoder (cont’d)
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Decoder (cont’d)
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Decoder (cont’d)



Attention mechanism
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Self-attention
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Self-attention (cont’d)
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Self-attention (cont’d)
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Self-attention (cont’d)

the

K

V

Q

the students opened their

the: 0.1 

students: 0.5

opened: 0.2

their: 0.2

all computations 
are parallelized



Self-attention (cont’d)
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Self-attention (cont’d)
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Quadratic complexity

The time complexity of 
self-attention is quadratic in 

the input length O(n2)a11 a12 a13 a14
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a31 a32 a33 a34

a41 a42 a43 a44



Self-attention in the decoder
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Self-attention in the decoder (cont’d)
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Multi-head attention
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Multi-head attention (cont’d)
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Cross-attention in the decoder
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Cross-attention in the decoder (cont’d)
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Encoder (one layer)
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Residual connection
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Residual connection



Layer normalization

Each activation vector is normalized so that its 
components have mean 0 and variance 1. This 

prevents activations from becoming too large or too 
small as they propagate through the network.



Residual connection and layer normalization



Position-wise Feed-Forward Networks

ReLU (Rectified 
Linear Unit)



Encoder (one layer)

Multi-head Self-attention 
(unmasked)

encoder

Feed Forward (non-linearity)⨁

⨁Add & Norm

Add & Norm



Layer 1

encoder

…

Encoder 
(N layers)

Layer 2

Layer N



Decoder (one layer)
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Attention visualizations



Attention visualizations (cont’d)



Sinusoidal positional encoding



Positional Encoding (cont’d)
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Different model architectures

● Encoder-only
○ BERT

● Encoder-decoder
○ T5

● Decoder-only
○ GPT



Image created by Gemini



A learning paradigm shift
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ELMo

Image created by Gemini



BERT vs. ELMo

BERT ELMo

Model Transformers Bidirectional LSTM (Long 
Short-Term Memory, a 
variant of RNN) 

Pre-training objective(s) Masked language 
modeling + next sentence 
prediction

Left-to-right language 
modeling

Adaptation method Fine-tuning Feature-based (pretrained 
representations as 
additional features to 
task-specific models)



Pretraining



Language modeling using a Transformer encoder
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Masked language modeling

students [MASK] [MASK] books
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What if we mask more tokens?

their
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What if we mask less tokens?

students opened [MASK] books
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CLS & SEP tokens
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BERT Pretraining
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BERT input representation



BERT Fine-tuning
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BERT Pretraining & Fine-tuning
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Intermediate-task transfer / fine-tuning

Intermediate-task 
transfer

Source 
(intermediate) task

Target 
task

Standard 
Fine-tuning

Target 
task

BERTBASE  → MNLI → RTE:  78.1 ± 1.9

BERTLARGE → MNLI → RTE:  82.3 ± 1.4

BERTBASE  → RTE:  63.5 ± 2.3

BERTLARGE → RTE:  68.6 ± 7.2



Can BERT be used for text generation?

Multi-head Self-attention (unmasked)

students opened their [MASK][CLS]
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books

iterative 
masking and 
unmasking



T5: Text-to-Text Transfer Transformer



encoder

Transformer decoder
(masked)

decoder

T5 Pretraining: Span corruption  

Transformer encoder
(unmasked)

Thank you for inviting me to your party last week

Thank you <X> me to your party <Y> week

<X>, <Y>: sentinel tokens

<BOS> <X> for inviting <Y> last

<X> for inviting <Y> last <EOS>…



T5 Fine-tuning

encoder

Transformer decoder
(masked)

decoder

Transformer encoder
(unmasked)

sentiment analysis: this movie was good

positive <EOS>

<BOS> positive



T5 facilitates multitask learning



Decoder-only model 
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Transformer decoder
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the architecture 
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Note on cross-attention

● Can be used to inject non-text data (e.g., 
images, structured data, or even sensor 
readings) into the model



 Pretraining with a causal LM (decoder-only)
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Transformer decoder
 (partially masked)
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 Training with prefix LM (decoder-only)
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Different attention mask patterns
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Different attention mask patterns (cont’d)
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Different attention mask patterns (cont’d)
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Thank you!


