

Course introduction & Transformers

CS 6804: Frontier AI Systems
Spring 2026

<https://tuvllms.github.io/ai-seminar-spring-2026/>

Tu Vu

Schedule and location

- **Time:** Monday & Wednesday 2:30 - 3:45 PM
- **Location:** Derring Hall 3092

Except for guest lectures, all lectures, student presentations, and discussions will be held in person only. No recordings will be made available.

Staff

- **Instructor:** Tu Vu
 - **Office hours:**
 - Friday 2:45 - 3:45 PM, [D&DS](#) 374
 - both in-person and via Zoom (link will be posted on Piazza)
 - will start next Friday, January 30th
- **Contact:** Please email me at cs6804instructors@gmail.com. For anonymous questions or comments, please use this [form](#).

Course materials

- Slides and readings (usually published research papers) will be provided as PDFs on the course website
<https://tuvllms.github.io/ai-seminar-spring-2026/>.

You don't need to purchase any textbooks!

Course materials (cont'd)

- Other useful texts
 - [Speech and Language Processing](#) by Jurafsky and Martin
 - [Reinforcement Learning from Human Feedback](#) by Lambert
 - [Foundations of Large Language Models](#) by Xiao and Zhu
 - [Dive into Deep Learning](#) by Zhang, Lipton, Li, and Smola
 - [Deep Learning](#) by Goodfellow, Bengio, and Courville

Communication channels

- **Course website:**
<https://tuvllms.github.io/ai-seminar-spring-2026/>
- **Piazza**: announcements and discussions
- **Gradescope**: assignment submissions
- **Canvas**: final grades & others
- **Discord**: questions & discussions (invite link will be available on Piazza)

Prerequisites

- No prerequisites are required for this course; however, the following could be helpful:
 - Familiarity with basic machine learning concepts
 - Familiarity with basic statistical concepts
 - Proficiency in Python programming

Grading policy

- **Grading breakdown:**
 - Written homework assignments (20%)
 - Discussion question submission + in-class participation (25%)
 - Presentations of assigned papers (25%)
 - Exam (in-class, 30%)
- Student presentations: groups of 2-3; **all groups should be formed by January 30th**
- Each student is allowed **two** late days total across all homework submissions

AI assistance policy

- AI assistance is permitted for completing assignments.
- If you use AI tools like ChatGPT or Gemini, you must submit the prompts you used and describe how the AI contributed to your work.
- It is your responsibility to verify the AI-generated content for accuracy before submission.

Course enrollment

- Please contact Sara Coulson at sara83@vt.edu with such requests
- The force-add request window for graduate-level courses
<https://students.cs.vt.edu/Graduate/forceadd.html>
- This class is currently full though

This course

- Six weeks of me lecturing, so that we are all roughly on the same page
- Rest of semester: student presentations and discussions of assigned papers

Main topics

- Transformers & Pretraining Scaling
- Efficient training & inference
- Post-training & Reinforcement Learning
- Large reasoning models & Test-time scaling
- Agents & Compound AI systems

Focus:

- **Efficiency & Reasoning & Agentic AI**

Why do we study AI?

- one of the most interesting and fastest-growing field
- AI expert Kai-Fu Lee predicts that its impact will be “more than anything in the history of mankind”
- Moreover, the intellectual frontiers of AI are wide open. Whereas a student of an older science such as physics might feel that the best ideas have already been discovered by Galileo, Newton, Curie, Einstein, and the rest, AI still has many openings for full-time masterminds

AI is creating new billionaires at a record pace

AI Boom Billionaires: These Tech Moguls Joined The Forbes List In 2025

The New York Times

<https://www.nytimes.com/ai-researchers-nba-stars> ::

[A.I. Researchers Are Negotiating \\$250 Million Pay ...](#)

Aug 1, 2025 — A.I. Researchers Are Negotiating \$250 Million Pay Packages. Just Like NBA Stars. - The New York Times.

Heroes of AI / Deep Learning

Geoffrey Hinton

Backpropagation & deep learning

Yann LeCun

Convolutional neural networks

Yoshua Bengio

Representation learning

Juergen Schmidhuber

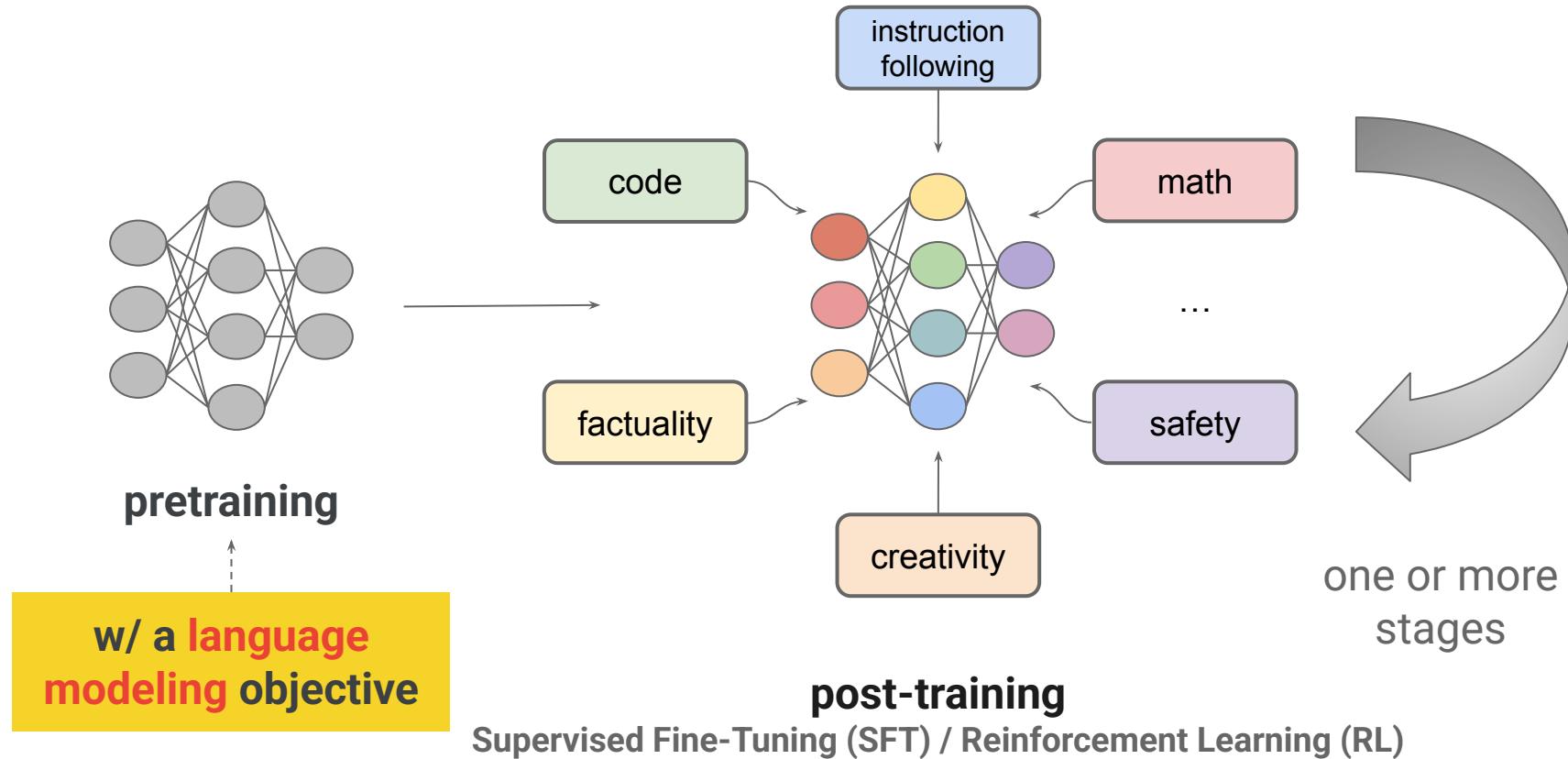
Long short-term memory (LSTM)

Andrew Ng

AI education & large-scale ML systems

Juergen Schmidhuber's TED talk in 2012

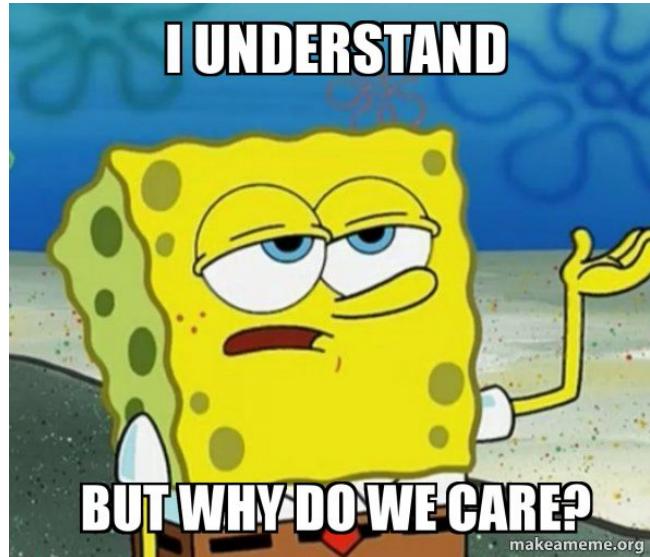
The development of modern LLMs



Language modeling

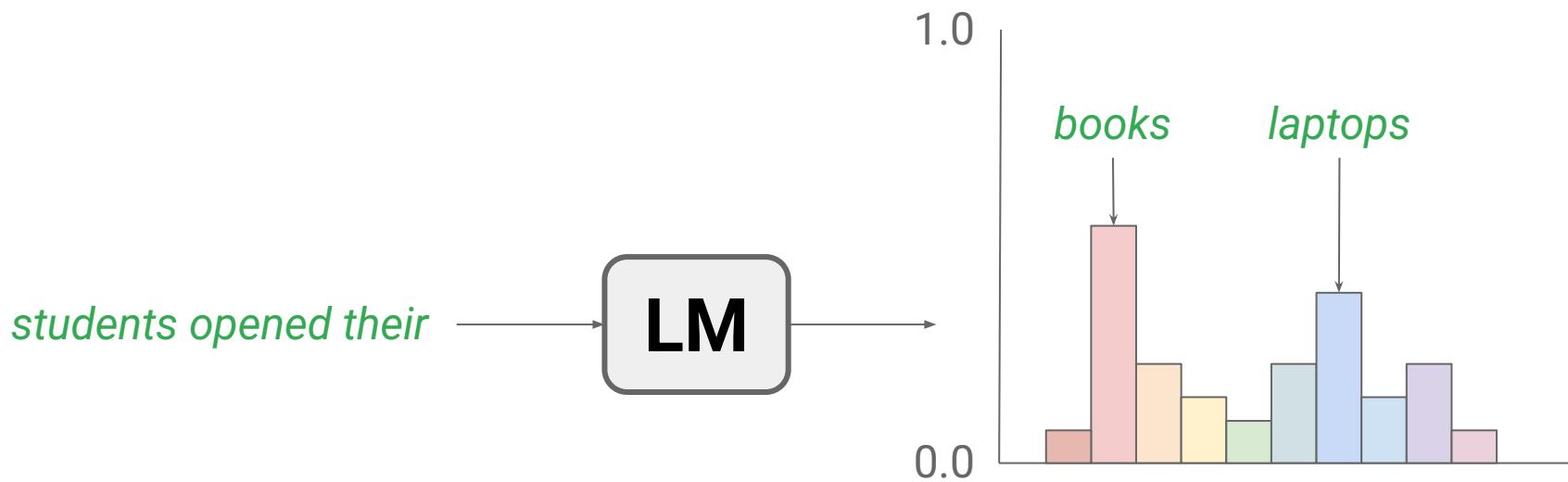
- Predicting the next/missing word

Example: “The cat is on the ____.” → Predicted: “mat”.



What is a language model?

- A machine learning model that assigns a *probability* to each possible next word, or a *probability distribution* over possible next words



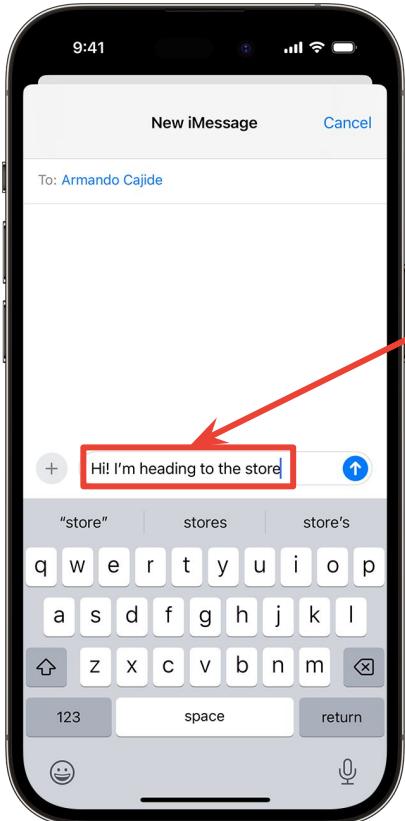
What is a language model? (cont'd)

- A language model can also assign a probability to an entire sentence

$$P(w_1, w_2, \dots, w_n) = P(w_1) \times P(w_2|w_1) \times \dots \times P(w_n|w_1, w_2, \dots, w_{n-1})$$

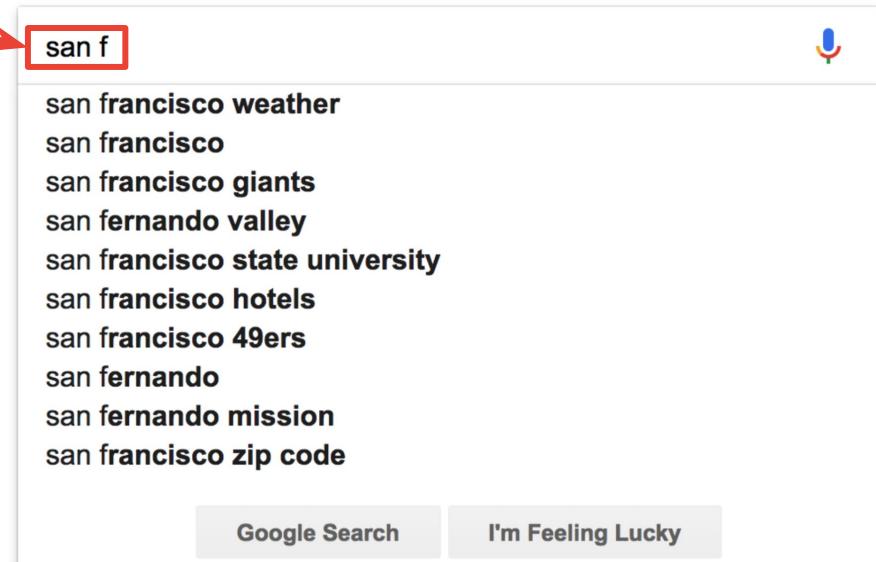
$$P(\text{"The cat is on the mat"}) = P(\text{"The"}) \times P(\text{"cat" | "The"}) \times P(\text{"is" | "The cat"}) \times P(\text{"on" | "The cat is"}) \times P(\text{"the" | "The cat is on"}) \times P(\text{"mat" | "The cat is on the"})$$

You use language models everyday!



prefix

Google



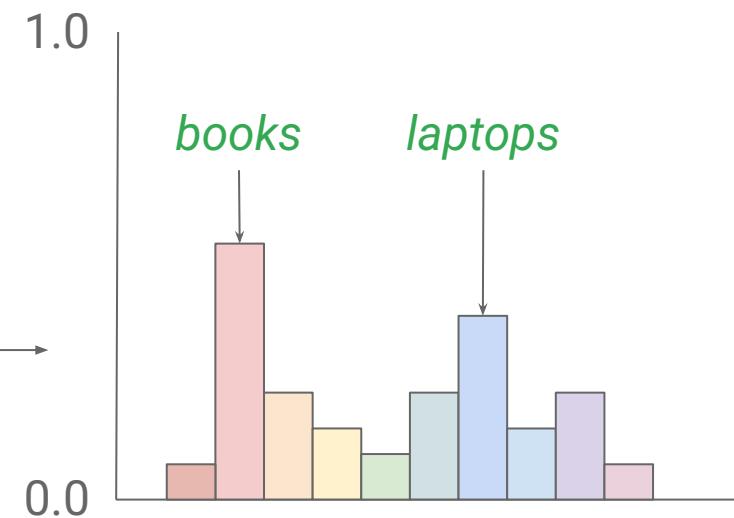
source: [Apple Support](#)

source: [Google Blog](#)

How to sample sentences from a language model?

- Decoding strategies
 - Greedy decoding
 - Sampling
 - Others (future lecture)

students opened their



N-grams

- An n-gram is a sequence of n words
- Unigram (n=1)
 - “The”, “water”, “of”, “Walden”, “Pond”
- Bigram (n=2)
 - “The water”, “water of”, “of Walden”, “Pond”
- Trigram (n=3)
 - “The water of”, “water of Walden”, “of Walden Pond”
- 4-gram
- ...

Matrix-vector multiplication

Matrix A (dimensions 4×3):

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Vector x (dimensions 3×1):

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Resulting vector b (dimensions 4×1):

$$b = A \cdot x = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 \end{bmatrix}$$

Softmax function

For a vector $y = [y_1, y_2, \dots, y_V]$ of dimension V , the softmax transformation is calculated as:

$$\text{softmax}(y) = \left[\frac{e^{y_1}}{\sum e^y}, \frac{e^{y_2}}{\sum e^y}, \dots, \frac{e^{y_V}}{\sum e^y} \right]$$

where $\sum e^y = e^{y_1} + e^{y_2} + \dots + e^{y_V}$.

Word representations / embeddings

- High-dimensional / sparse / one-hot representations
- Low-dimensional / dense representations

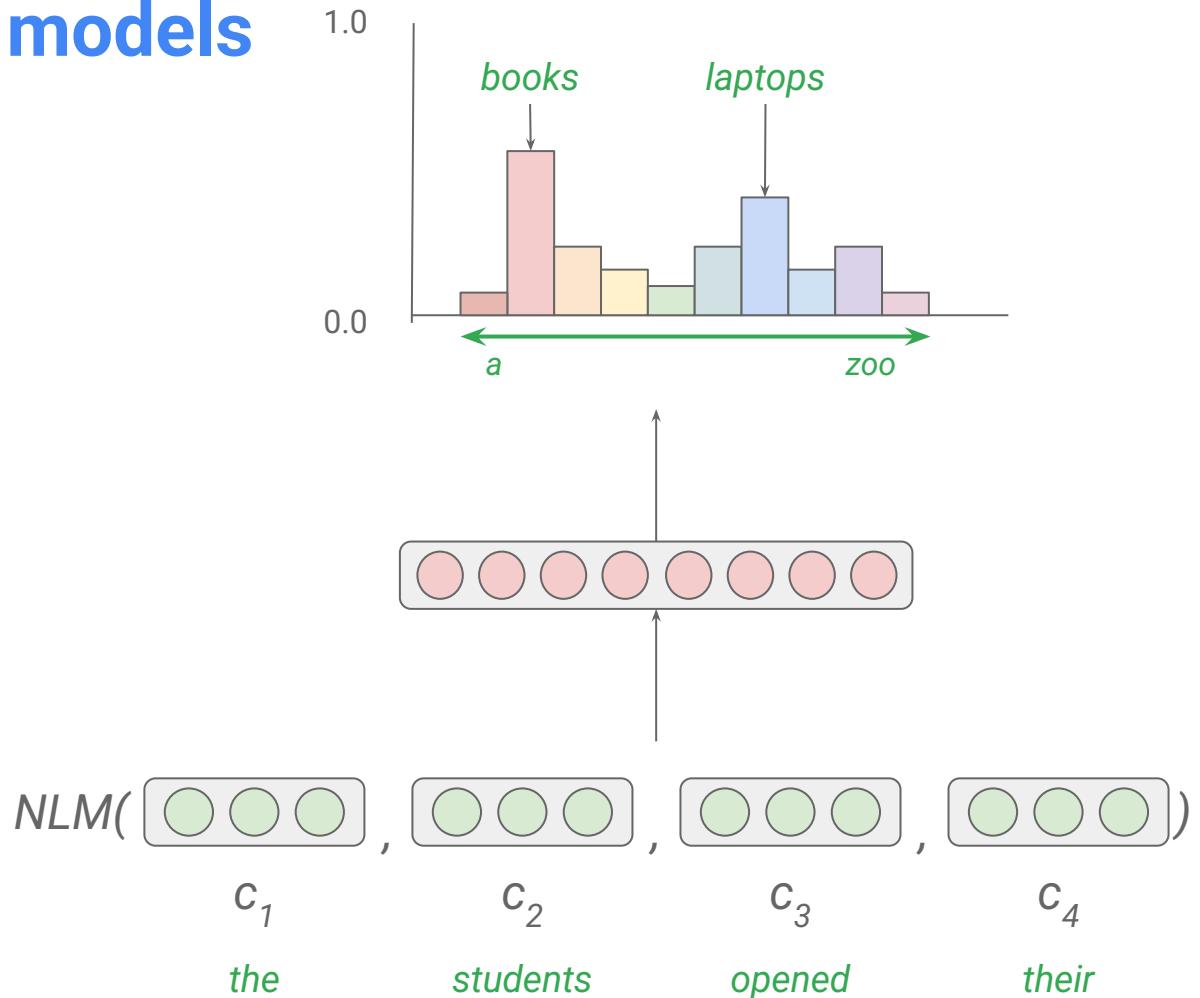
Word representations / embeddings (cont'd)

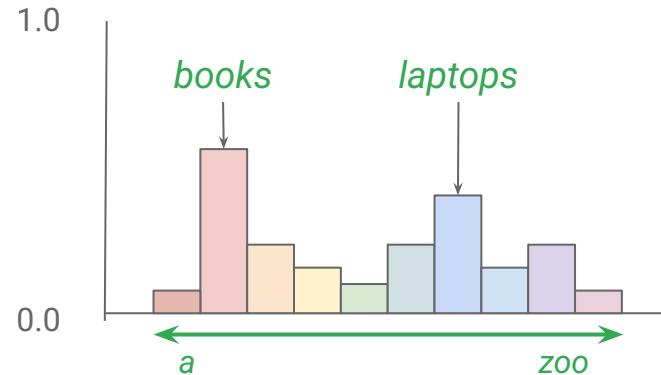
▶ `#What is the vector representation for a word?`

```
w2v_model['computer']
```

```
array([ 1.07421875e-01, -2.01171875e-01,  1.23046875e-01,  2.11914062e-01,
       -9.13085938e-02,  2.16796875e-01, -1.31835938e-01,  8.30078125e-02,
       2.02148438e-01,  4.78515625e-02,  3.66210938e-02, -2.45361328e-02,
       2.39257812e-02, -1.60156250e-01, -2.61230469e-02,  9.71679688e-02,
      -6.34765625e-02,  1.84570312e-01,  1.70898438e-01, -1.63085938e-01,
      -1.09375000e-01,  1.49414062e-01, -4.65393066e-04,  9.61914062e-02,
       1.68945312e-01,  2.60925293e-03,  8.93554688e-02,  6.49414062e-02,
       3.56445312e-02, -6.93359375e-02, -1.46484375e-01, -1.21093750e-01,
      -2.27539062e-01,  2.45361328e-02, -1.24511719e-01, -3.18359375e-01,
      -2.20703125e-01,  1.30859375e-01,  3.66210938e-02, -3.63769531e-02,
      -1.13281250e-01,  1.95312500e-01,  9.76562500e-02,  1.26953125e-01,
       6.59179688e-02,  6.93359375e-02,  1.02539062e-02,  1.75781250e-01,
      -1.68945312e-01,  1.21307373e-03, -2.98828125e-01, -1.15234375e-01,
       5.66406250e-02, -1.77734375e-01, -2.08984375e-01,  1.76757812e-01,
       2.38037109e-02, -2.57812500e-01, -4.46777344e-02,  1.88476562e-01,
       5.51757812e-02,  5.02929688e-02, -1.06933594e-01,  1.89453125e-01,
      -1.16210938e-01,  8.49609375e-02, -1.71875000e-01,  2.45117188e-01,
      -1.73828125e-01, -8.30078125e-03,  4.56542969e-02, -1.61132812e-02,
       1.86523438e-01, -6.05468750e-02, -4.17480469e-02,  1.82617188e-01,
       2.20703125e-01, -1.22558594e-01, -2.55126953e-02, -3.08593750e-01,
       9.13085938e-02,  1.60156250e-01,  1.70898438e-01,  1.19628906e-01,
       7.08007812e-02, -2.64892578e-02, -3.08837891e-02,  4.06250000e-01,
      -1.01562500e-01,  5.71289062e-02, -7.26318359e-03, -9.17968750e-02,
      -1.50390625e-01, -2.55859375e-01,  2.16796875e-01, -3.63769531e-02,
       2.24609375e-01,  8.00781250e-02,  1.56250000e-01,  5.27343750e-02]
```

Neural language models





W_2

h

W_1

output distribution

$$\hat{y} = \text{softmax}(W_2 h)$$

c_1
the

c_2
students

c_3
opened

c_4
their

Composition functions

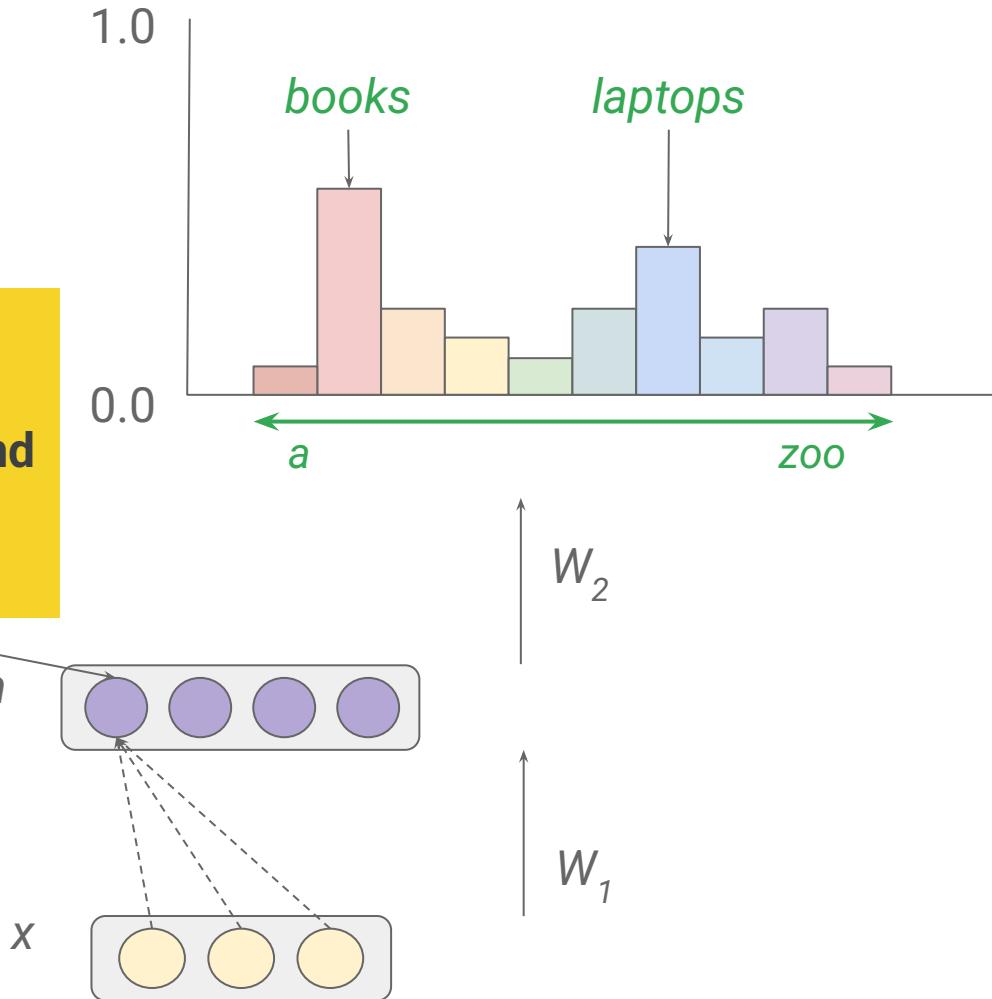
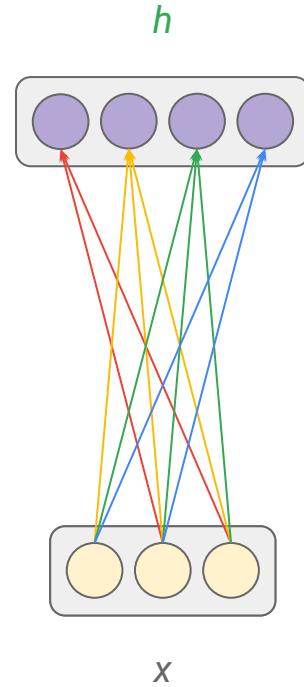
- Element-wise functions
 - e.g., just sum up all of the word embeddings
- Concatenation
- Feedforward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers

Feedforward neural language model

hidden layer

$$h = f(W_1 x)$$

hidden unit:
taking a weighted
sum of its inputs and
then applying a
non-linearity



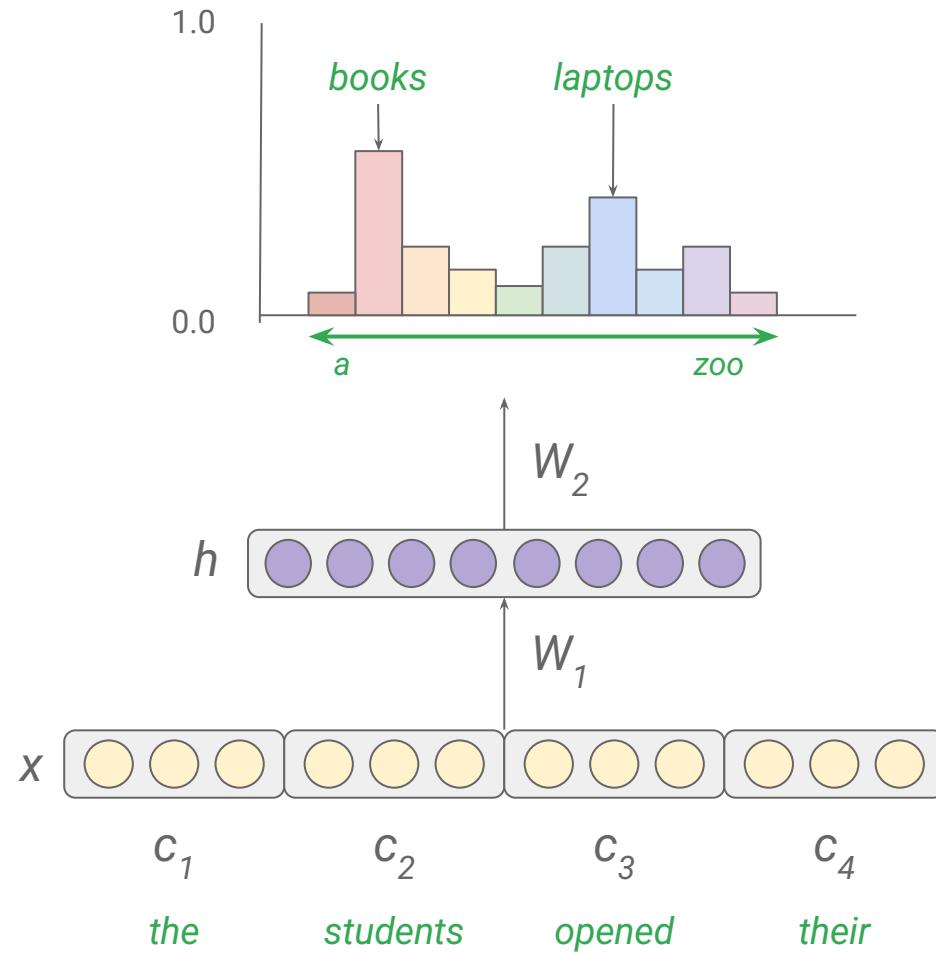
hidden layer

$$h = f(W_1 x)$$

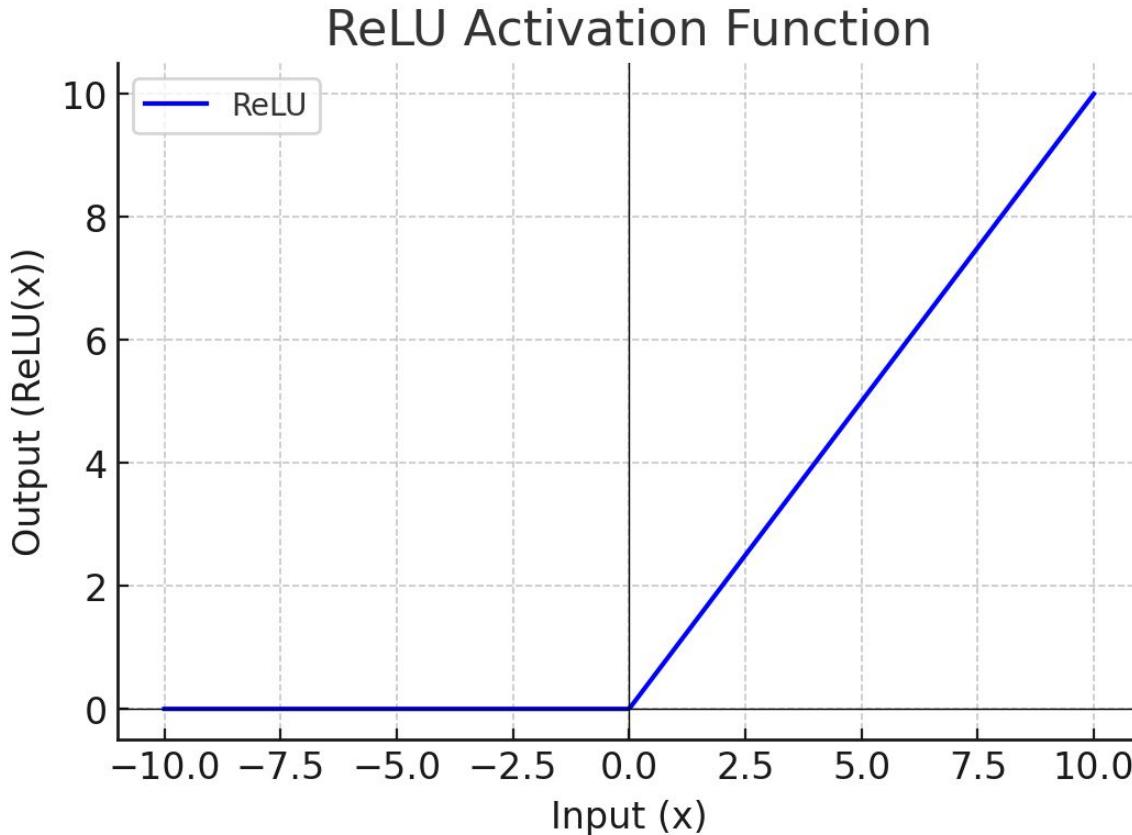
f is a non-linear activation function to model non-linear relationships between words

output distribution

$$\hat{y} = \text{softmax}(W_2 h)$$

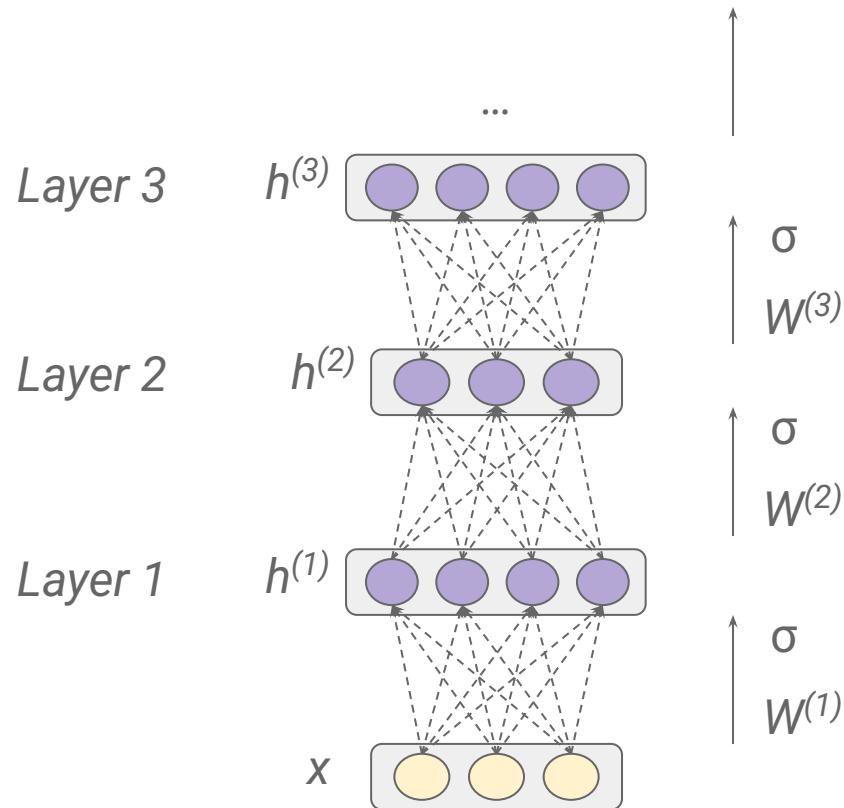


Activation functions



Rectified
Linear Unit
(ReLU)

Deep neural networks

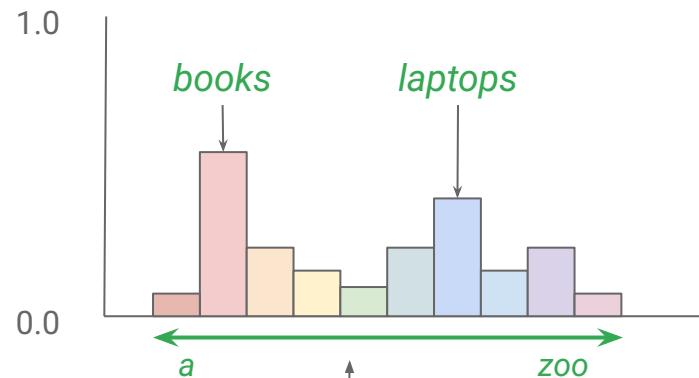
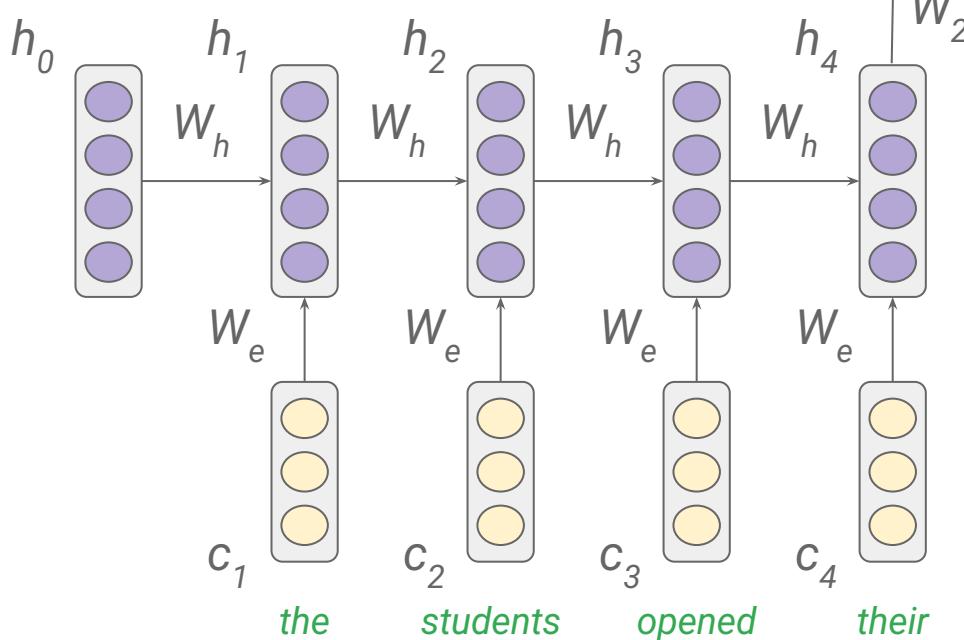


hierarchical representations, where each layer builds upon the previous one

Recurrent neural networks (RNNs)

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c^t)$$



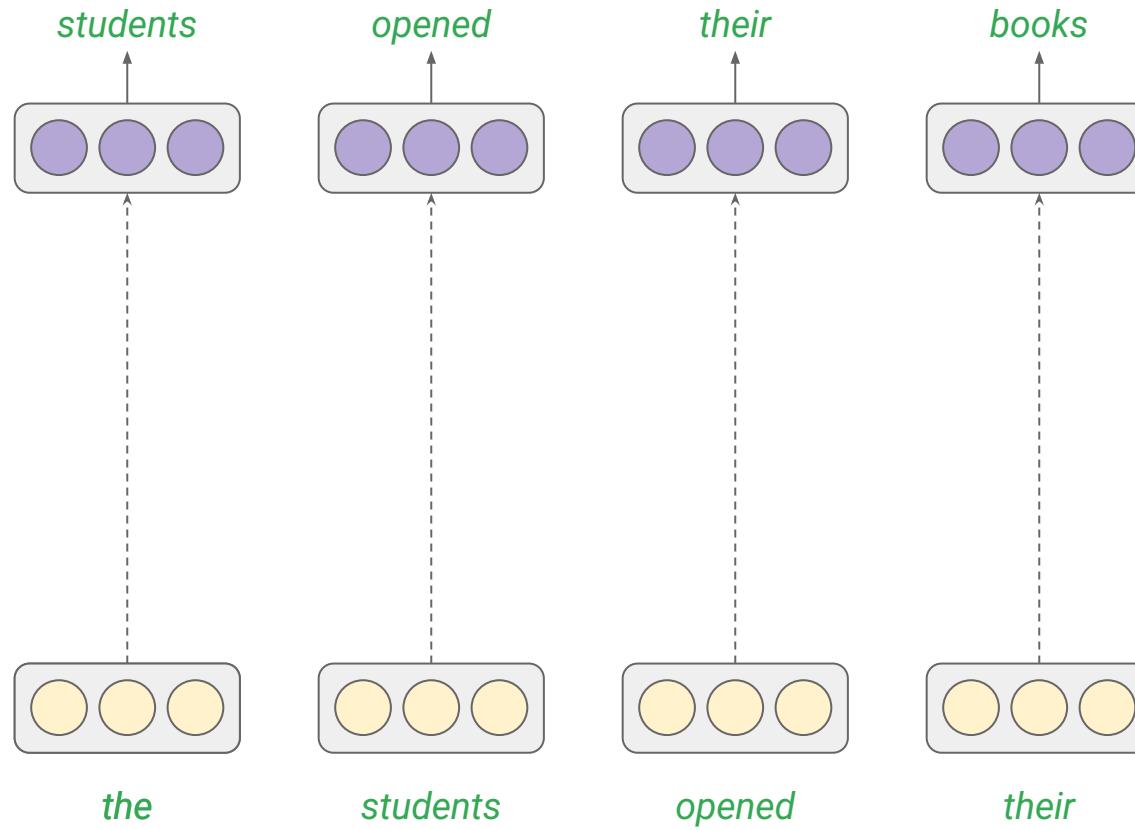
output distribution

$$\hat{y} = \text{softmax}(W_2 h^{(n-1)})$$

Problems with RNNs

- Bottleneck representation issue
- Lack of parallelism

Seq2Seq



Transformers

Provided proper attribution is provided, Google hereby grants permission to reproduce the tables and figures in this paper solely for use in journalistic or scholarly works.

Attention Is All You Need

Ashish Vaswani*

Google Brain

avaswani@google.com

Noam Shazeer*

Google Brain

noam@google.com

Niki Parmar*

Google Research

nikip@google.com

Jakob Uszkoreit*

Google Research

usz@google.com

Llion Jones*

Google Research

llion@google.com

Aidan N. Gomez* [†]

University of Toronto

aidan@cs.toronto.edu

Lukasz Kaiser*

Google Brain

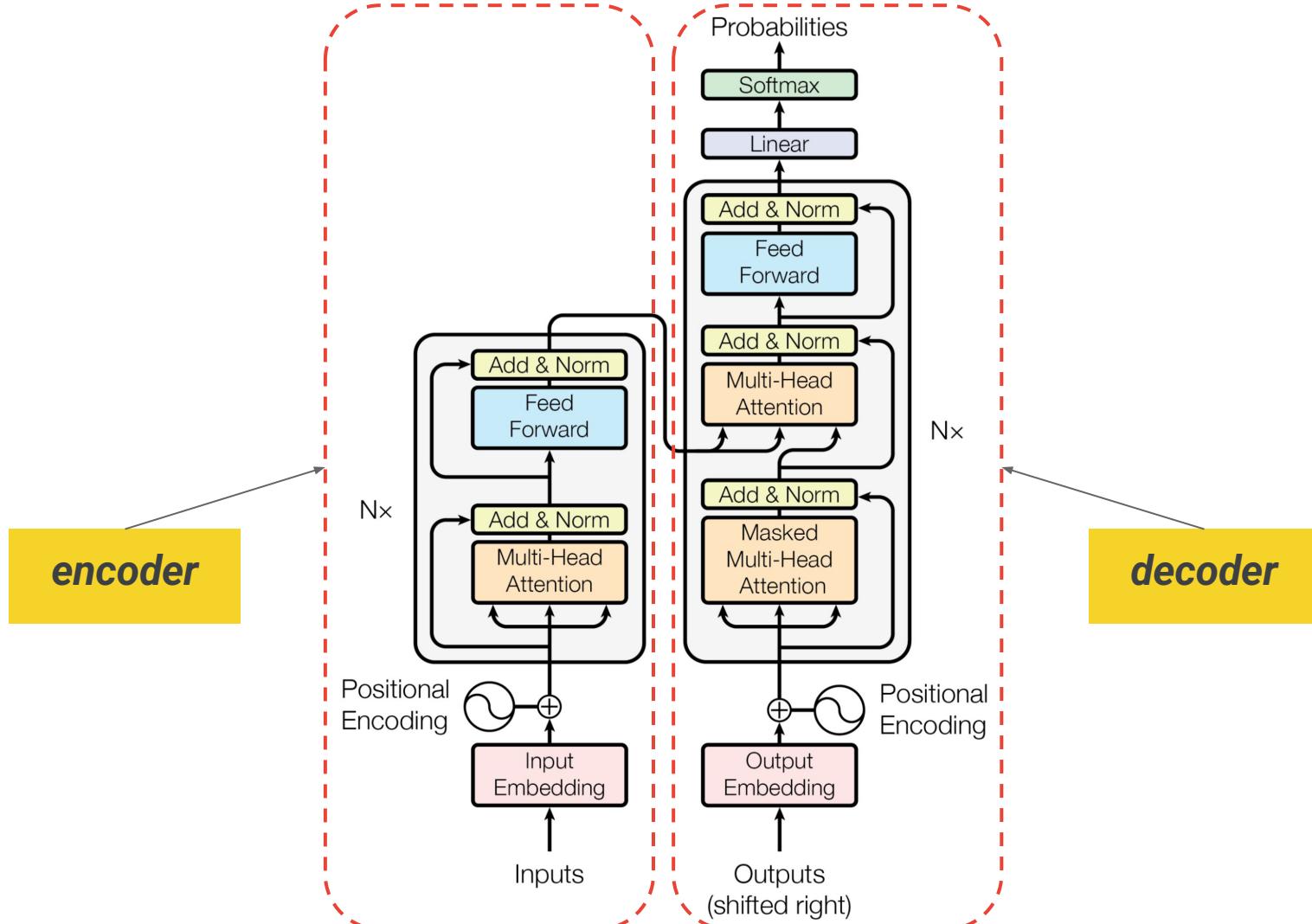
lukaszkaiser@google.com

Illia Polosukhin* [‡]

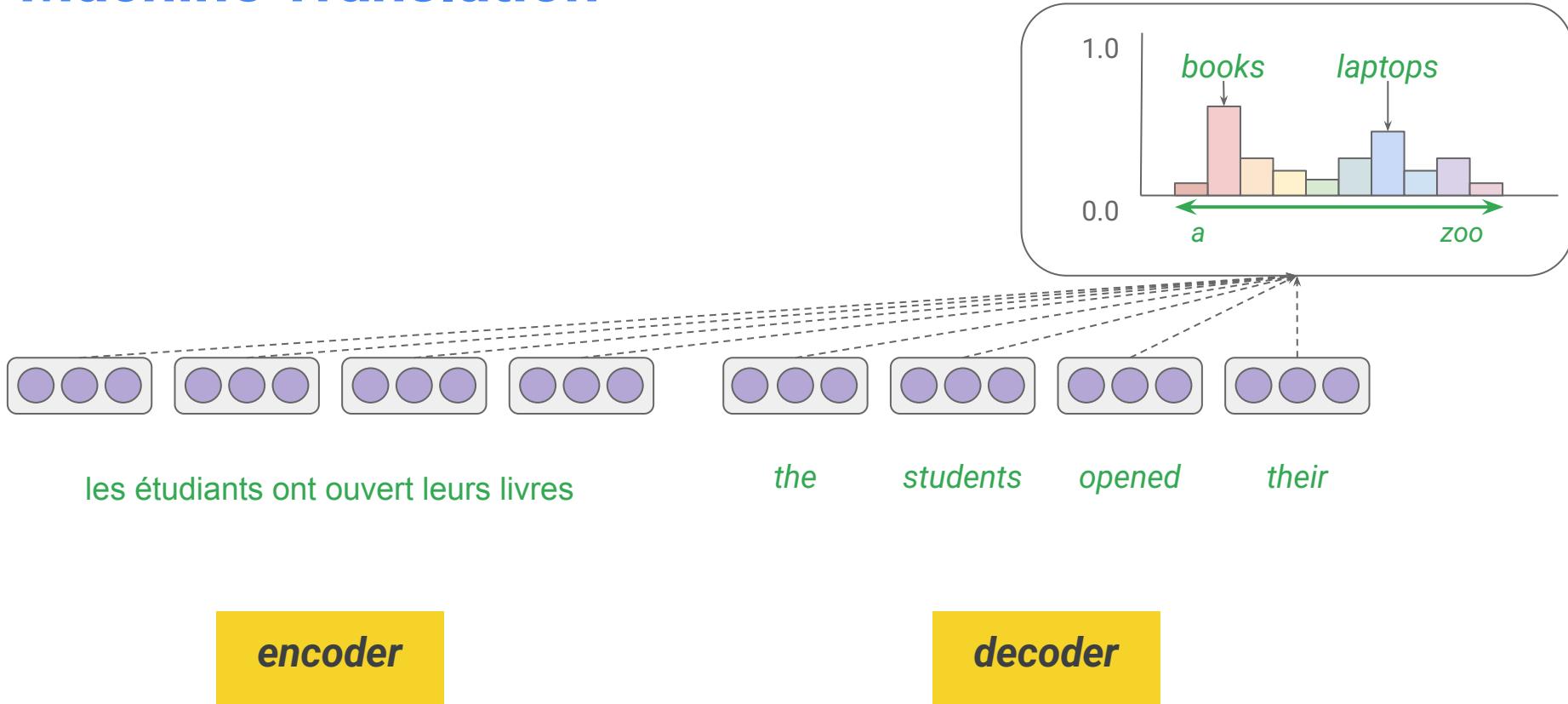
illia.polosukhin@gmail.com

Transformers

- Before 2017
 - Recurrent neural networks (RNNs)
 - LSTM (Long Short-Term Memory)
 - Convolutional neural networks (CNNs)
- These days
 - Transformers



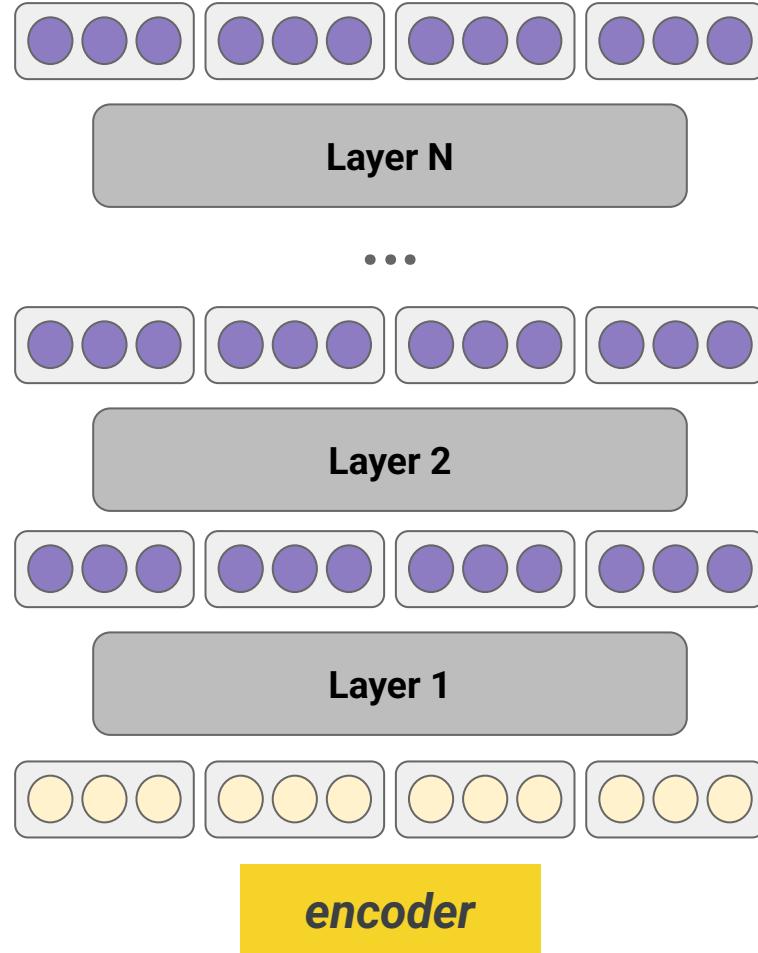
Machine Translation



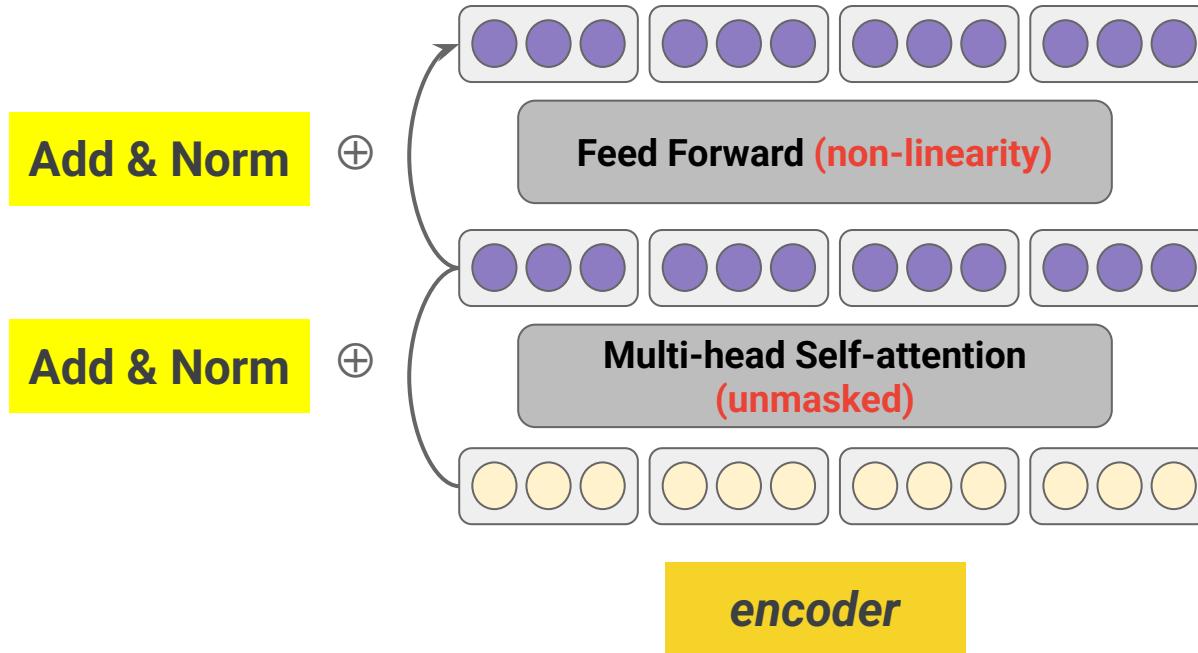
Different model architectures

- Encoder-only
 - BERT
- Encoder-decoder
 - T5
- Decoder-only
 - GPT

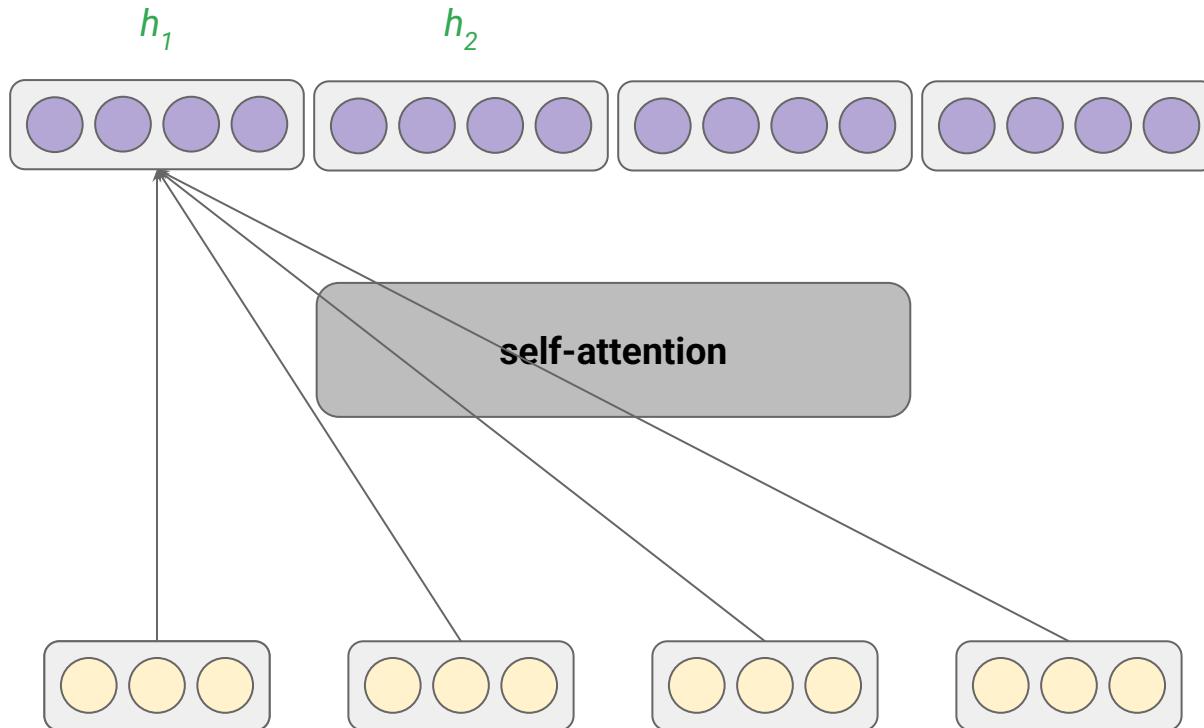
Encoder (N layers)



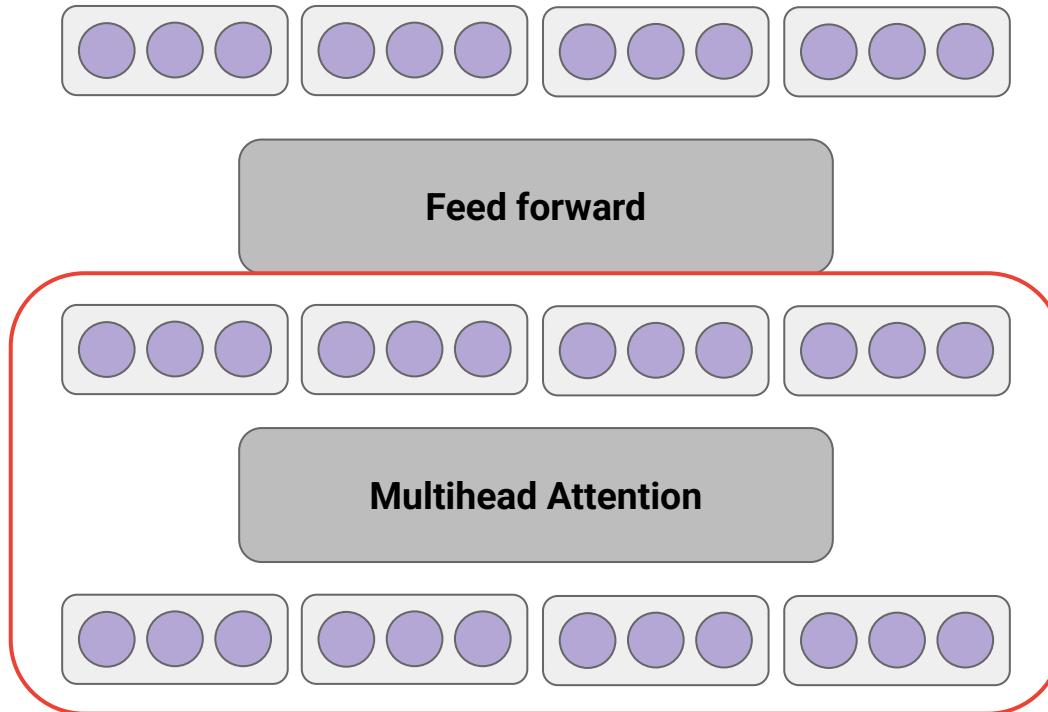
Encoder (one layer)



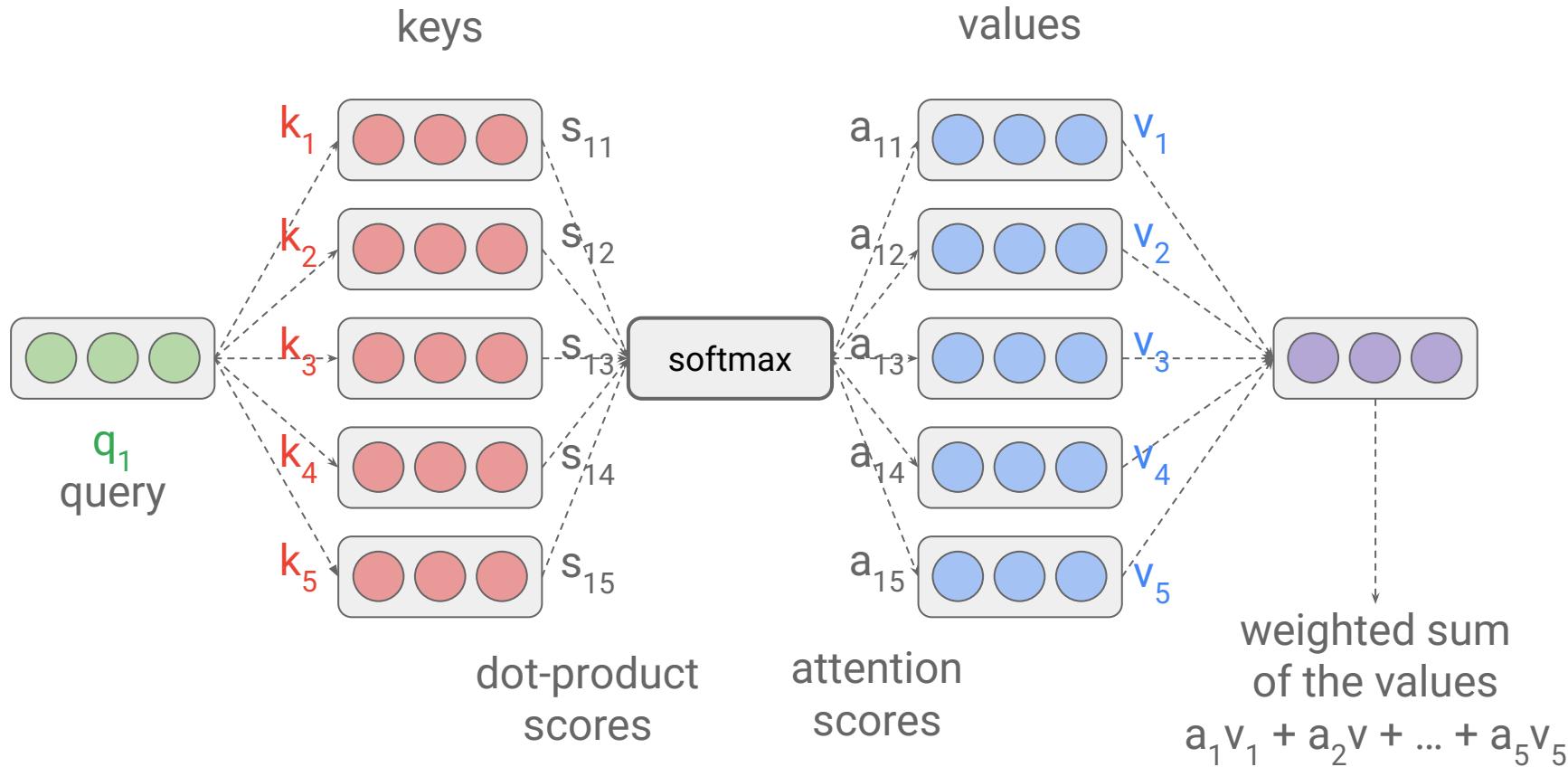
Self-attention



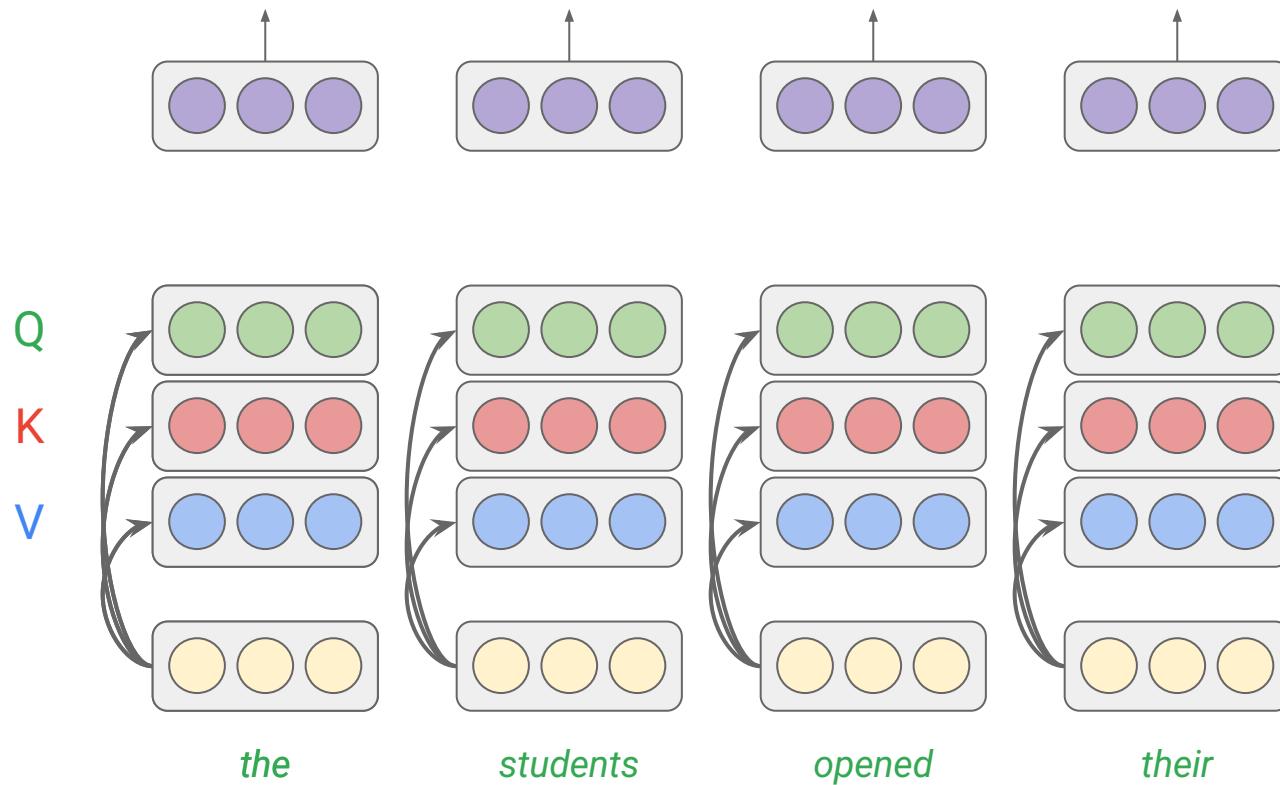
Transformer block



Attention



Attention (cont'd)



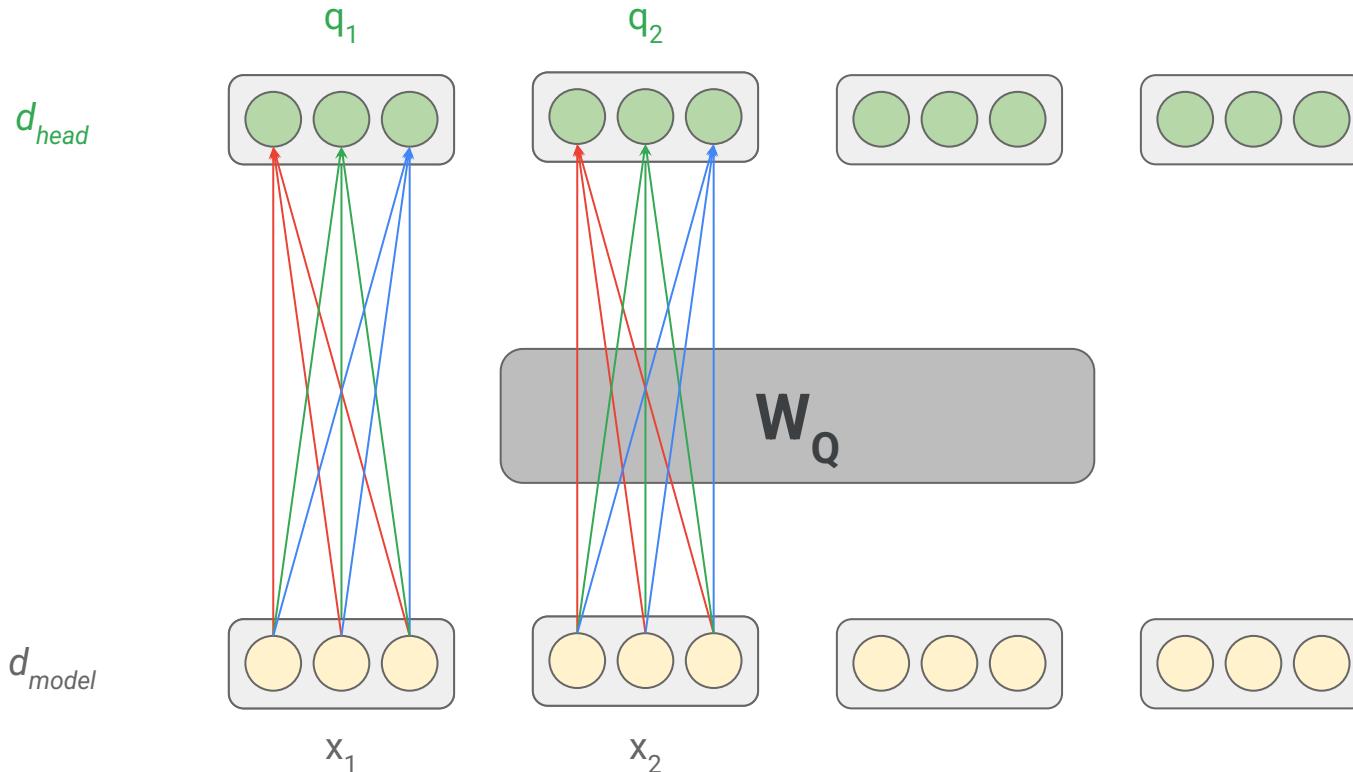
$$Q = X \cdot W_Q$$

$$K = X \cdot W_K$$

$$V = X \cdot W_V$$

linear
projections

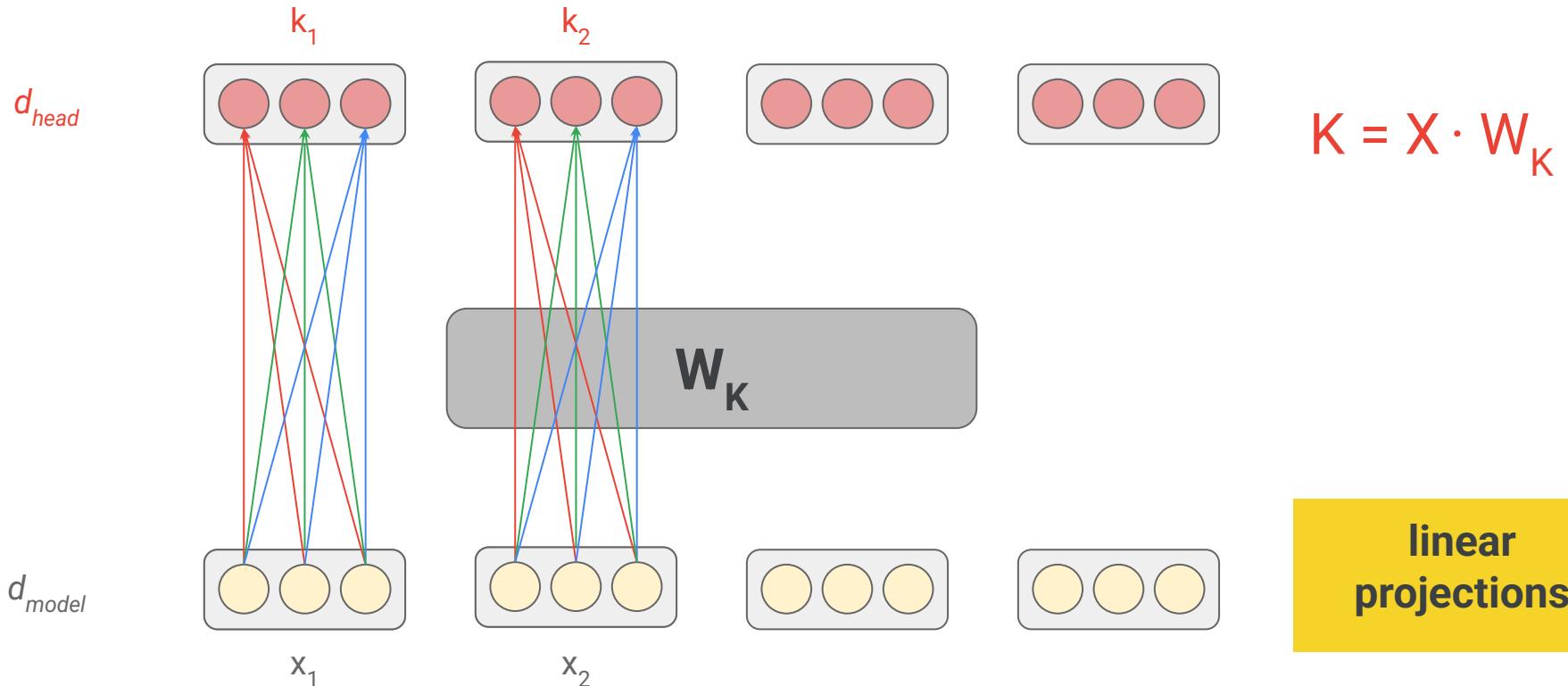
Query vectors



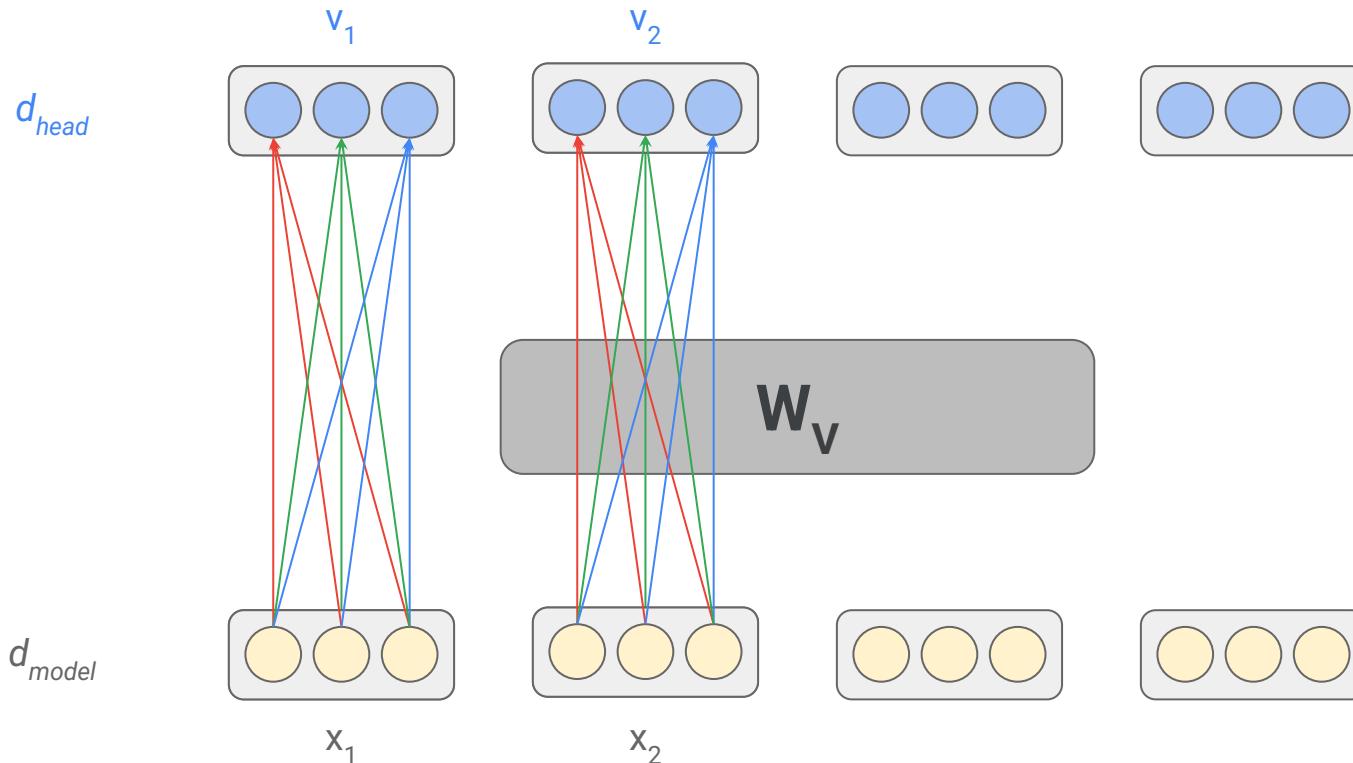
$$Q = X \cdot W_Q$$

linear
projections

Key vectors



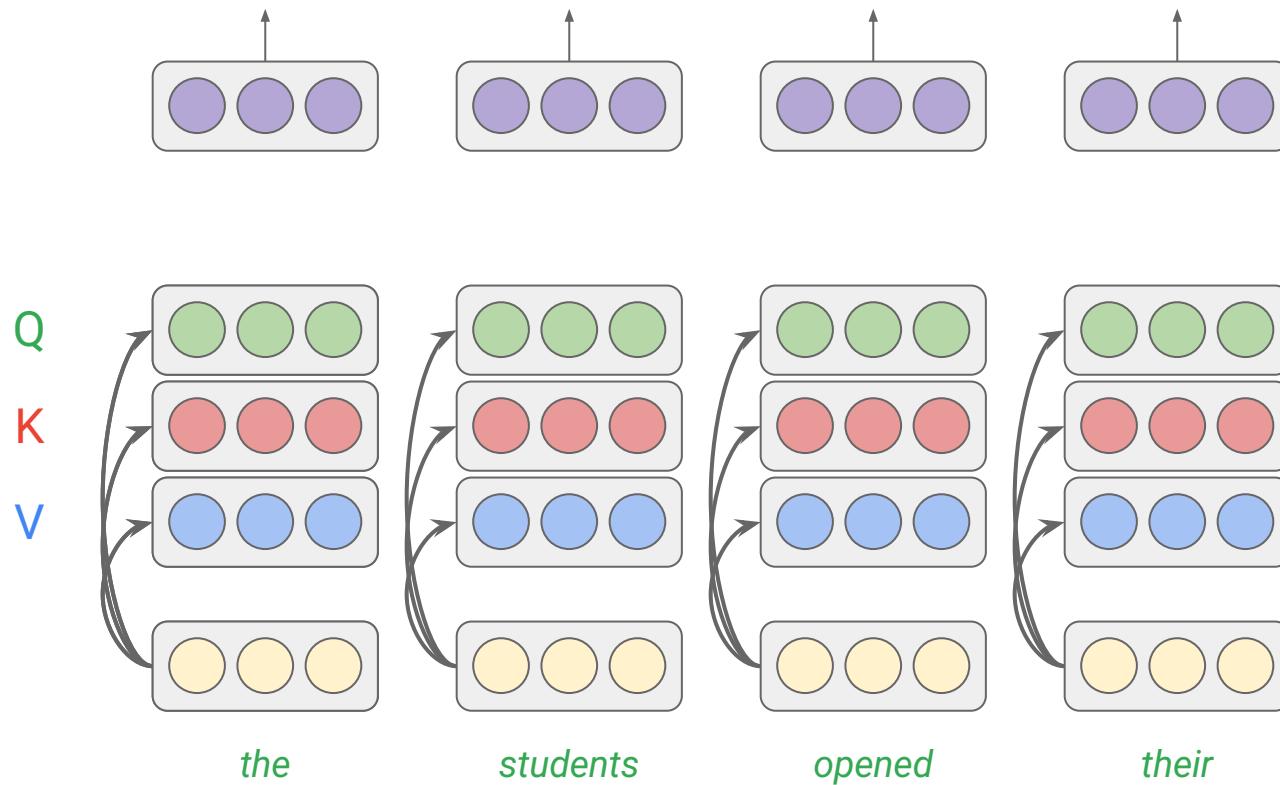
Value vectors



$$V = X \cdot W_v$$

linear
projections

Attention (cont'd)



$$Q = X \cdot W_Q$$

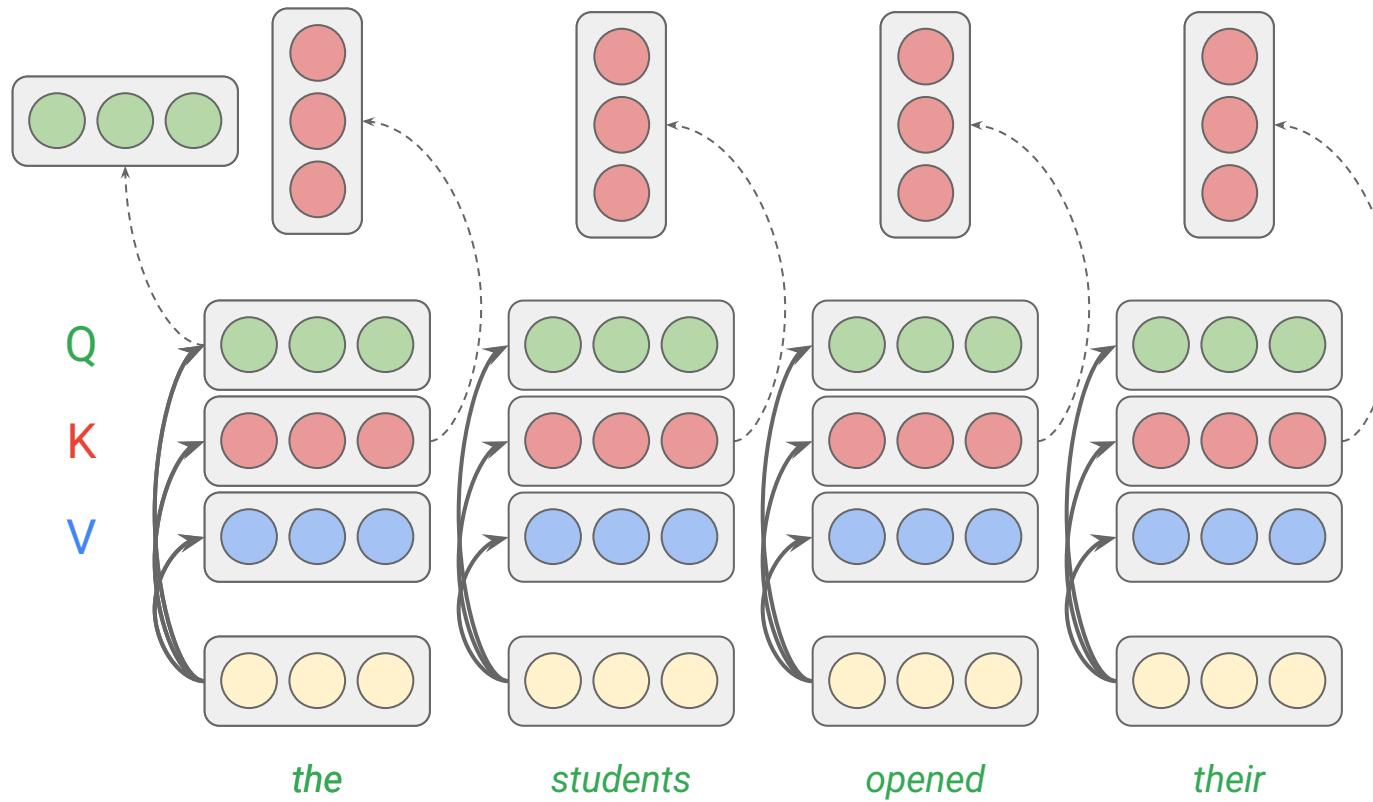
$$K = X \cdot W_K$$

$$V = X \cdot W_V$$

linear
projections

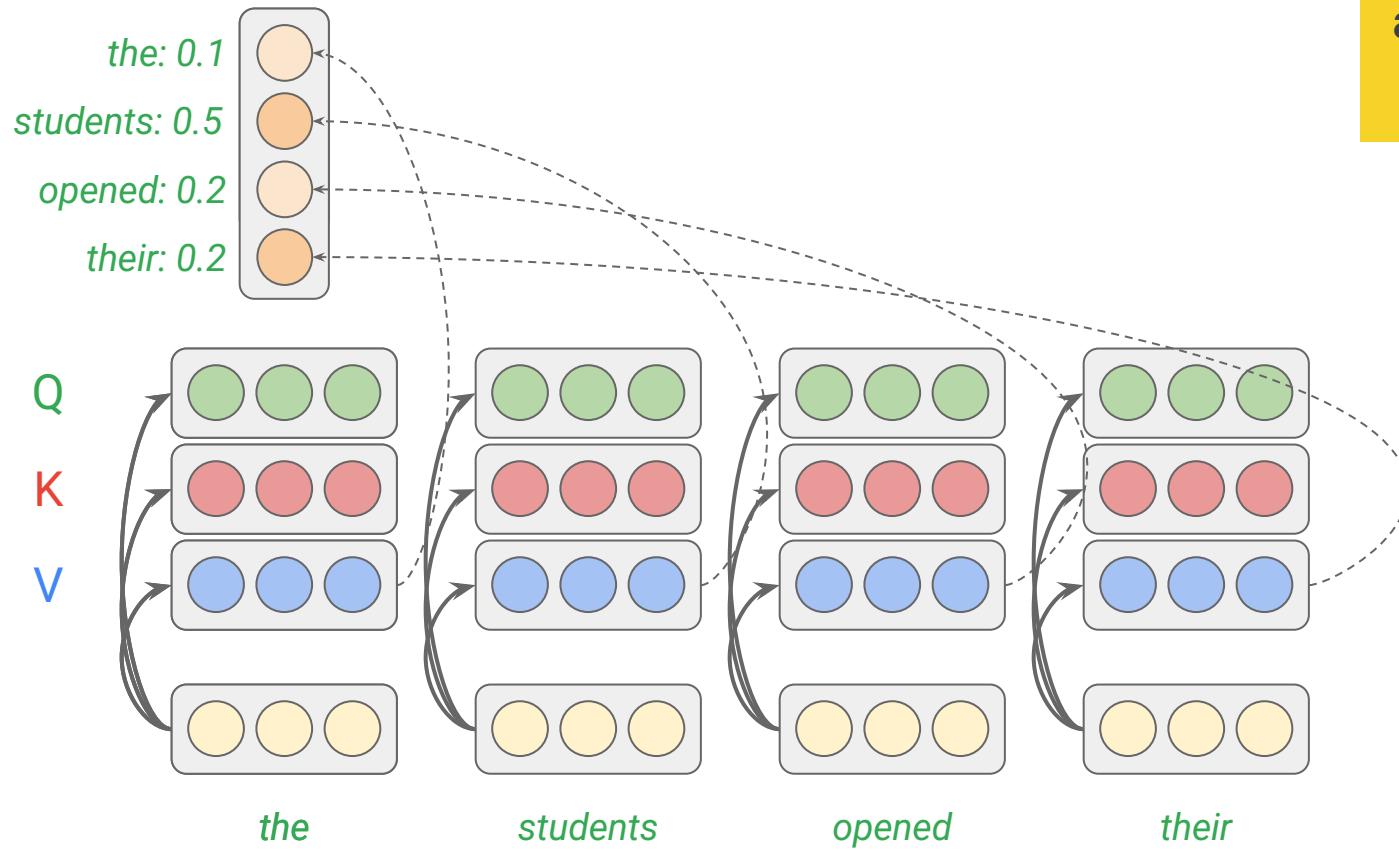
Self-attention (cont'd)

all computations
are parallelized



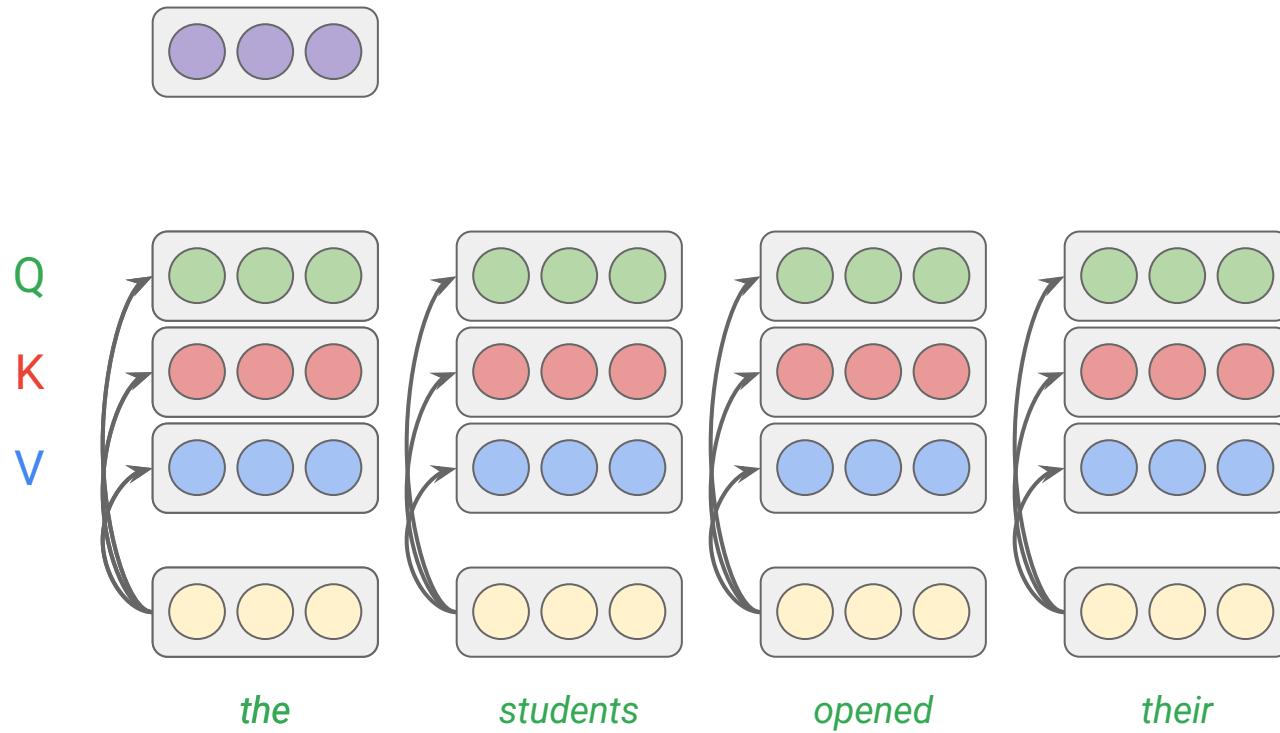
Self-attention (cont'd)

all computations are parallelized



Self-attention (cont'd)

all computations
are parallelized

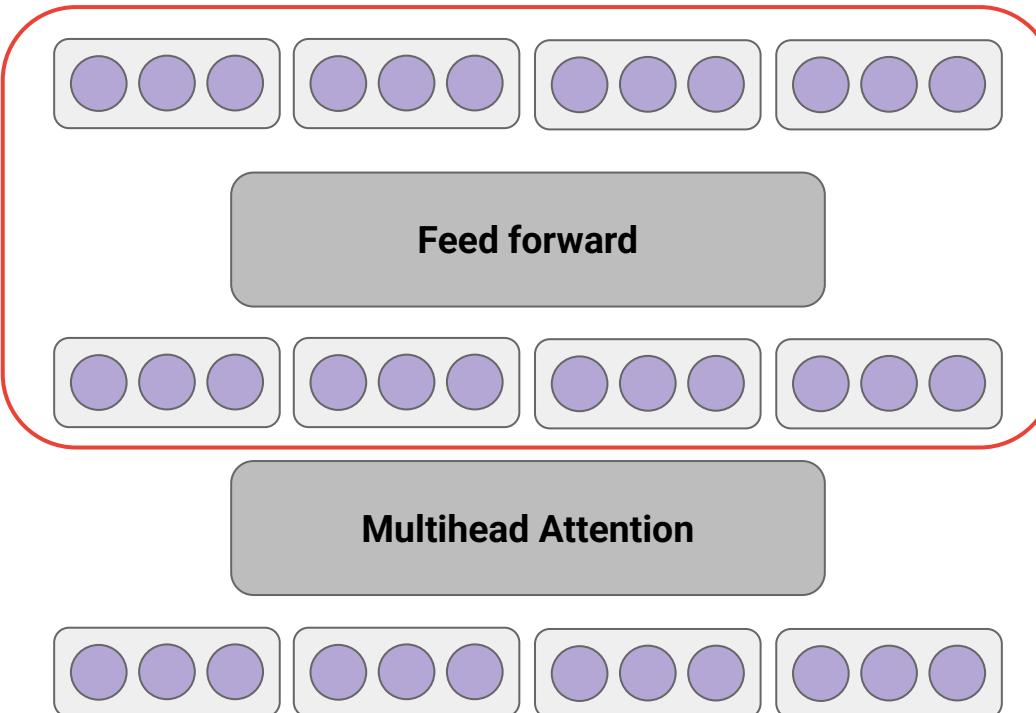


Self-attention (cont'd)

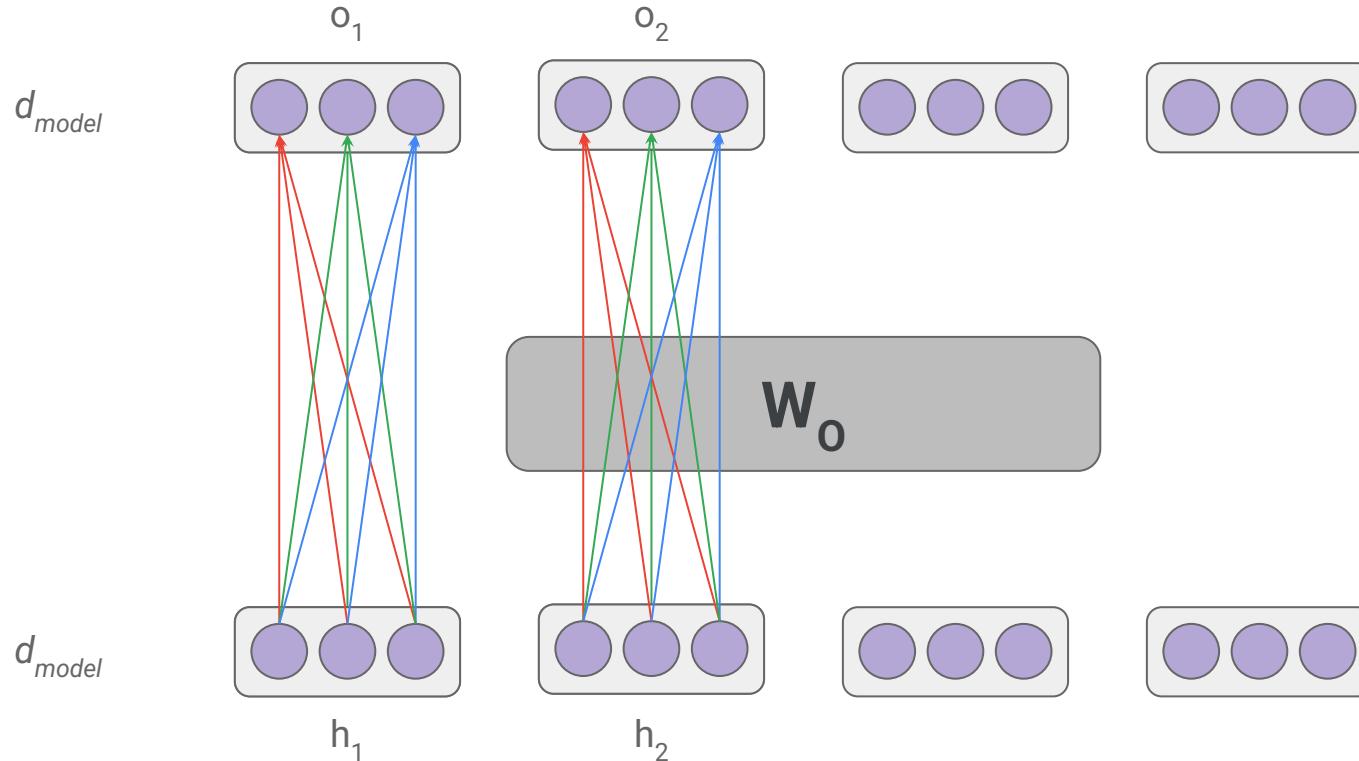
**all computations
are parallelized
during training
and sequential
during inference**



Transformer block (cont'd)



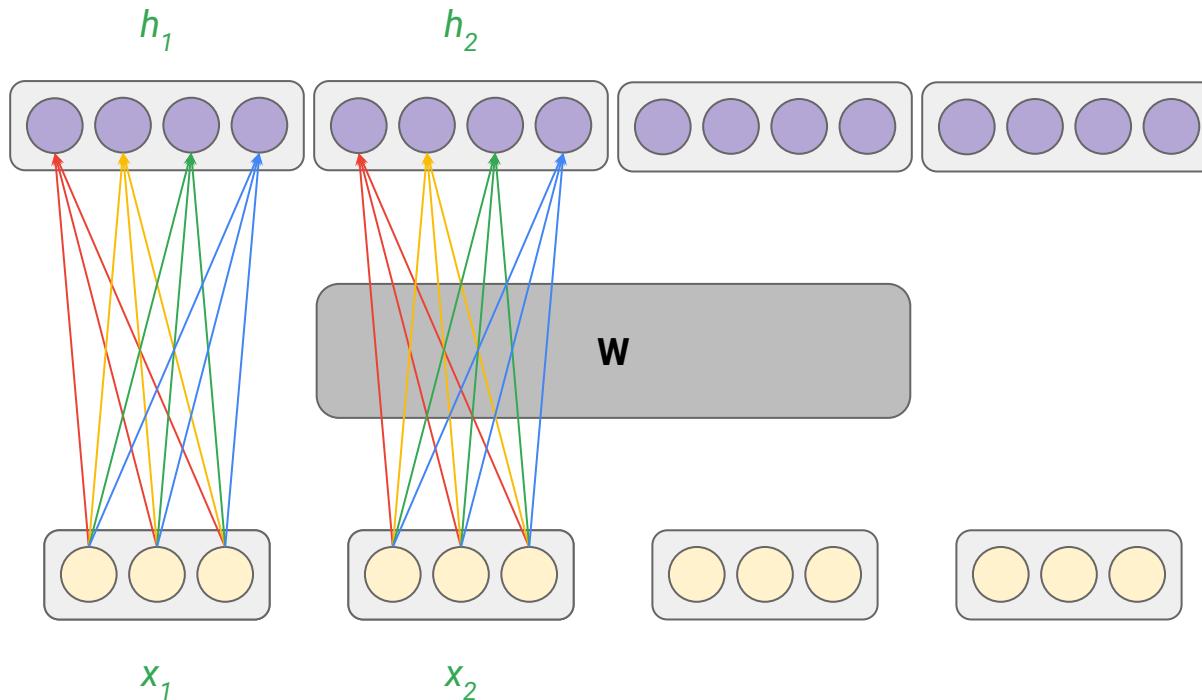
output vectors



$$O = H \cdot W_o$$

linear
projections

Position-wise feedforward networks



Thank you!