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● 🚨 Homework 1 due March 17 🚨
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The development of modern LLMs
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Today’s lecture: LLM alignment pipeline
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Why is pretraining not sufficient?









Instruction tuning
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Limitations of instruction tuning

● Doesn’t learn from negative feedback
● Some prompts (e.g., creative ones) have many acceptable outputs, we 

only train on one or a few of them
● Hard to encourage abstaining when the model doesn’t know 

something
● Doesn't guarantee that the model will generalize well to new or 

ambiguous situations where responses require nuanced reasoning, 
ethical considerations, or subjective judgment. For example, an 
SFT-trained model may still produce harmful or biased outputs in edge 
cases due to the absence of explicit reward signals for preferred 
behavior.

● Does not directly involve human preferences



Reinforcement learning from human feedback (RLHF)



Step 1: SFT



Step 1: SFT (cont’d)
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Step 2: Reward 
modelling



Step 2: Collecting human preferences



Step 2: The Bradley-Terry model



Step 2: Maximum likelihood

rɸ(x, y) is often initialized from the SFT model 𝜋SFT(y | x) with an added 
linear layer on top of the final transformer layer to output a single 

scalar reward prediction. 





Step 2: Why maximum likelihood?

● There is a probabilistic model of the data
○ The model defines a probability distribution over 

possible observations.
● We maximize the probability of observed data

○ We adjust model parameters to make observed 
outcomes more likely under the assumed distribution.

● The objective function is derived from the likelihood 
○ The loss function corresponds to the negative 

log-likelihood (NLL) of the data.



Using the reward model

● “Best-of-N” (an instance of rejection sampling) 
○ Generates N samples for a given prompt and chooses the 

sample with the highest reward
● RAFT: Reward rAnked FineTuning (Dong et al., 2023)

○ Selects the high-quality samples, discarding those that 
exhibit undesired behavior, and subsequently fine-tuning on 
these filtered samples

● Reinforcement learning
○ Increases p(yw|x) by a small amount, decreases p(yw|x) by a 

small amount, where amounts are functions of R(yw|x) and 
R(yl|x)

https://arxiv.org/abs/2304.06767


Step 3



Step 3: RL fine-tuning

The second term prevents the model from deviating too far from the 
distribution on which the reward model is accurate.







RLHF pipeline: putting it all together
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The effects of RLHF on LLM generalization & 
diversity









Thank you!


