Parameter-efficient fine-tuning

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

VIRGINIA TECH

Logistics

- Quiz 2 will be released tomorrow
- Homework 2 will be released sometime next week
- We are sending out feedback on final project proposals
- Please email us at <u>cs5624instructors@gmail.com</u>

Transformer recap

Attention mechanism

all computations are parallelized during training and sequential during inference

all computations are parallelized during training and sequential during inference

Q K V V X the students opened their all computations are parallelized during training and sequential during inference

All computations are parallelized

Attention(Q, K, V) = softmax(Q)

d_v: scaling factor

large products push the softmax function into regions where it has extremely small gradients

Multi-head attention

 $\operatorname{MultiHead}(Q,K,V) = \operatorname{Concat}(\operatorname{head}_1,\ldots,\operatorname{head}_h)W_O$

where

$$\mathrm{head}_i = \mathrm{Attention}(QW_{Q_i}, KW_{K_i}, VW_{V_i})$$

The projections are parameter matrices:

$$W_{Q_i} \in \mathbb{R}^{d_{ ext{model}} imes d_k}, W_{K_i} \in \mathbb{R}^{d_{ ext{model}} imes d_k}, W_{V_i} \in \mathbb{R}^{d_{ ext{model}} imes d_v}$$

and

$$W_O \in \mathbb{R}^{hd_v imes d_{ ext{model}}}.$$

In the Transformer paper, they employ h = 8 parallel attention layers, or heads. For each of these, they use $d_k = d_v = \frac{d_{\text{model}}}{h} = 64$. Due to the reduced dimension of each head, the total computational cost is similar to that of single-head attention with full dimensionality.

$h = \sigma(Wx)$

Model parameters (weights)

- Weight matrices
 - \circ E.g., W_Q, W_K, W_V, W_O
- Bias terms

Limitations of full model tuning

Limitations of full model tuning

The Power of Scale for Parameter-Efficient Prompt Tuning

Brian Lester* Rami Al-Rfou Noah Constant Google Research {brianlester,rmyeid,nconstant}@google.com

Soft prompt tuning

"The Power of Scale for Parameter-Efficient Prompt Tuning" by Lester et al. (2021)

Advantages of soft prompt tuning

Parameter-efficient tuning & mixed-task inference

Improvement with Scale

Resilience to domain shift

Train	Eval	Tuning	Accuracy	F1
QQP	MRPC	Model Prompt	73.1 ±0.9 76.3 ±0.1	81.2 ±2.1 84.3 ±0.3
MRPC	QQP	Model Prompt	$\begin{array}{c c} 74.9 \pm 1.3 \\ \textbf{75.4} \pm 0.8 \end{array}$	70.9 ±1.2 69.7 ±0.3

Effect of prompt length

Effect of prompt initialization

Effect of pretraining method

Parameter usage

Interpretability

• the learned prompts taken as sequences show little interpretability

Limitations of soft prompt tuning

SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer

Tu Vu^{1,2★} Brian Lester¹ Noah Constant¹ Rami Al-Rfou¹ Daniel Cer¹ Google Research¹ University of Massachusetts Amherst² {ttvu, brianlester, nconstant, rmyeid, cer}@google.com tuvu@cs.umass.edu

Source Prompt Tuning

Target Prompt Tuning

Prompt-based task embeddings capture task relationships

Targeted SPoT

Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation

Tu Vu^{1,2★}, Aditya Barua¹, Brian Lester¹, Daniel Cer¹, Mohit Iyyer², Noah Constant¹ Google Research¹ University of Massachusetts Amherst² {ttvu, adityabarua, brianlester, cer, nconstant}@google.com {tuvu, miyyer}@cs.umass.edu

Factorized prompts

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models

Elad Ben-Zaken¹ Shauli Ravfogel^{1,2} Yoav Goldberg^{1,2} ¹Computer Science Department, Bar Ilan University ²Allen Institute for Artificial Intelligence {benzakenelad, shauli.ravfogel, yoav.goldberg}@gmail.com

Parameter-Efficient Transfer Learning for NLP

Neil Houlsby¹ Andrei Giurgiu^{1*} Stanisław Jastrzębski^{2*} Bruna Morrone¹ Quentin de Laroussilhe¹ Andrea Gesmundo¹ Mona Attariyan¹ Sylvain Gelly¹

Adapters

Prefix-Tuning: Optimizing Continuous Prompts for Generation

Xiang Lisa Li Stanford University xlisali@stanford.edu Percy Liang Stanford University pliang@cs.stanford.edu

- The rank of a matrix is the number of linearly independent rows or columns (whichever is smaller)
- A *full-rank* matrix refers to a matrix that does not have any constraints on its rank. In other words, it has the maximum possible rank, meaning all of its rows and columns are linearly independent.

LORA: LOW-RANK ADAPTATION OF LARGE LAN-GUAGE MODELS

Edward Hu*Yelong Shen*Phillip WallisZeyuan Allen-ZhuYuanzhi LiShean WangLu WangWeizhu ChenMicrosoft Corporation{edwardhu, yeshe, phwallis, zeyuana,yuanzhil, swang, luw, wzchen}@microsoft.comyuanzhil@andrew.cmu.edu

Weight changes during model adaptation have a low "intrinsic rank"

- The learned over-parametrized models in fact reside on a low intrinsic dimension
 - intrinsic dimension: the minimal number of variables needed to describe the essential variations in the data
- Many real-world high-dimensional datasets actually lie on or near a lower-dimensional manifold embedded in the high-dimensional space
- If a model or function resides in a low intrinsic dimension, then it may be possible to approximate it well with fewer parameters or a lower-dimensional representation, leading to improved generalization and efficiency

For a pre-trained weight matrix $W_0 \in \mathbb{R}^{d \times k}$, we constrain its update by representing the latter with a low-rank decomposition $W_0 + \Delta W = W_0 + BA$, where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, and the rank $r \ll \min(d, k)$. During training, W_0 is frozen and does not receive gradient updates, while A and B contain trainable parameters. Note both W_0 and $\Delta W = BA$ are multiplied with the same input, and their respective output vectors are summed coordinate-wise.

For $h = W_0 x$, our modified forward pass yields:

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

Advantages of LoRA

Model & Method # Trainable										
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB_{base} (Adpt ^D)*	0.3M	$87.1_{\pm.0}$	$94.2_{\pm.1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2_{\pm.0}$	$71.5_{\pm 2.7}$	$89.7_{\pm.3}$	84.4
RoB_{base} (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7_{\pm.3}$	$\textbf{88.4}_{\pm.1}$	$62.6_{\pm.9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm.3}$	$95.1_{\pm.2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$93.3_{\pm.3}$	$\textbf{90.8}_{\pm.1}$	$\pmb{86.6}{\scriptstyle \pm.7}$	$91.5_{\pm.2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$90.6_{\pm.2}$	$96.2_{\pm.5}$	90.9 ±1.2	68.2 ±1.9	$\textbf{94.9}_{\pm.3}$	$91.6_{\pm.1}$	87.4 ±2.5	$92.6_{\pm.2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	$90.2_{\pm.3}$	96.1 _{±.3}	$90.2_{\pm.7}$	68.3 ±1.0	$\textbf{94.8}_{\pm.2}$	91.9 $_{\pm.1}$	$83.8_{\pm 2.9}$	$92.1_{\pm.7}$	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	$\textbf{90.5}_{\pm.3}$	$\textbf{96.6}_{\pm.2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm.3}$	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
RoB_{large} (Adpt ^H)†	6.0M	$89.9_{\pm.5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$\textbf{92.1}_{\pm.1}$	$83.4_{\pm1.1}$	$91.0_{\pm 1.7}$	87.8
RoB_{large} (Adpt ^H) [†]	0.8M	$90.3_{\pm.3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm.2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB_{large} (LoRA)†	0.8M	$\textbf{90.6}_{\pm.2}$	$96.2_{\pm.5}$	90.2 $_{\pm 1.0}$	$68.2_{\pm 1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6_{\pm.2}$	85.2 $_{\pm 1.1}$	$\textbf{92.3}_{\pm.5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	91.9 $_{\pm .2}$	$96.9_{\pm.2}$	$92.6_{\pm.6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	92.9 $_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$93.0_{\pm .2}$	91.3

Model&Method	# Trainable	WikiSQL	MNLI-m	SAMSum	
wodereewiethou	Parameters	Acc. (%)	Acc. (%)	R1/R2/RL	
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5	
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5	
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5	
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5	
GPT-3 (Adapter ^H)	7.1 M	71.9	89.8	53.0/28.9/44.8	
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1	
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9	
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1	

LoRA exhibits better scalability and task performance

Given a limited parameter budget, which weight matrices should we apply LoRA to?

	# of Trainable Parameters = 18M						1
Weight Type Rank <i>r</i>	$\begin{vmatrix} W_q \\ 8 \end{vmatrix}$	$rac{W_k}{8}$	$rac{W_v}{8}$	$rac{W_o}{8}$	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	70.4 91.0	70.0 90.8	73.0 91.0	73.2 91.3	71.4 91.3	73.7 91.3	73.7 91.7

The effect of rank r on model performance

	Weight Type	$\mid r=1$	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$\left \begin{array}{c} W_{q} \\ W_{q}, W_{v} \\ W_{q}, W_{k}, W_{v}, W_{o} \end{array}\right.$	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI ($\pm 0.1\%$)	$\left \begin{array}{c} W_{q} \\ W_{q}, W_{v} \\ W_{q}, W_{k}, W_{v}, W_{o} \end{array}\right.$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

practical recommendations

of training examples

- < 20: LoRA is difficult to train
- 50: LoRA w/ careful settings can be better than full model fine-tuning; r=1 or 4
- O(100): e.g., 200-500, LoRA is recommended; r=1 or 4
- O(10K): should compare LoRA vs. full model fine-tuning
- Very large (>100K): LoRA can get decent quality to match full model fine-tuning when r is large, e.g., 128 or 512

Limitations of parameter-efficient tuning methods

Published in Transactions on Machine Learning Research (08/2024)

LoRA Learns Less and Forgets Less

Dan Biderman^{1,2}, Jacob Portes², Jose Javier Gonzalez Ortiz², Mansheej Paul², Philip Greengard¹, Connor Jennings², Daniel King², Sam Havens², Vitaliy Chiley², Jonathan Frankle², Cody Blakeney², John P. Cunningham¹ ¹Columbia University {db3236, pg2118, jpc2181}@columbia.edu ²Databricks Mosaic Research {jacob.portes, j.gonzalez, mansheej.paul, connor.jennings, daniel.king, sam.havens, vitaliy.chiley, jfrankle, cody.blakeney}@databricks.com Published as a conference paper at COLM 2024

Efficient Cross-Task Generalization via Dynamic LoRA Composition

Chengsong Huang^{†§}*, Qian Liu[†]*, Bill Yuchen Lin[◊]*, Tianyu Pang[†], Chao Du[†], Min Lin[†] [†]Sea AI Lab, Singapore [§]Washington University in St. Louis, MO, USA [◊]Allen Institute for AI, Seattle, WA, USA

