Mixture of Experts

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

VIRGINIA TECH

Logistics

- Quiz 2 & Homework 2 are postponed
- We are sending out feedback on final project proposals
- Please email us at <u>cs5624instructors@gmail.com</u>

More on benefits of parameter-efficient tuning

- Parameter-efficient transfer learning
- Multimodal learning
- Security & privacy

Soft prompt tuning

"The Power of Scale for Parameter-Efficient Prompt Tuning" by Lester et al. (2021)

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

William Fedus* LIAMFEDUS@GOOGLE.COM

Barret Zoph* BARRETZOPH@GOOGLE.COM

Noam Shazeer

NOAM@GOOGLE.COM Google, Mountain View, CA 94043, USA

The Bitter Lesson

"The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the most effective, and by a large margin."

Rich Sutton, 2019

Simple architectures—backed by a generous computational budget, data set size and parameter count—surpass more complicated algorithms

Switch Transformers

- Vanilla Transformer
 - \circ densely-activated
- Switch Transformer
 - sparsely-activated expert model
 - with an outrageous number of parameters—but a constant computational cost (!)
 - pretraining up to *trillion* parameter models and achieving a 4x speedup over the T5-XXL (11B)

Switch Transformers

The layer operates independently on the tokens

Mixture of Expert Routing

The MoE layer takes as an input a token representation x and then routes this to the best determined top-k experts, selected from a set $\{E_i(x)\}_{i=1}^N$ of N experts. The router variable W_r produces logits $h(x) = W_r \cdot x$, which are normalized via a

softmax distribution over the available N experts at that layer. The gate value for expert $m{i}$ is given by:

$$p_i(x) = rac{e^{h(x)_i}}{\sum_j e^{h(x)_j}}$$

The top-k gate values are selected for routing the token x. If T is the set of selected top-k indices, then the output computation of the layer is the linearly weighted combination of each expert's computation on the token by the gate value:

$$y = \sum_{i \in T} p_i(x) E_i(x)$$

Rethinking Mixture-of-Experts

• <u>Shazeer et al. (2017)</u>

- routing to k > 1 experts
- intuition: learning to route would not work without the ability to compare at least two experts
- Switch layer
 - routes to only a *single* expert
 - preserves model quality
 - reduces routing computation
 - performs better

expert capacity = $\left(\frac{\text{tokens per batch}}{\text{number of experts}}\right) \times \text{capacity factor}$

Terminology

- **Experts:** Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

What would happen with the blue (dropped) token?

An auxiliary load balancing loss

Given N experts indexed by i = 1 to N and a batch B with T tokens, the auxiliary loss is computed as the scaled dot-product between vectors f and P:

The auxiliary loss encourages uniform routing since it is minimized under a uniform distribution

Lower standard dropout rate for non-expert layers, higher for expert feed-forward layers

Model (dropout)	GLUE	CNNDM	SQuAD	SuperGLUE
T5-Base $(d=0.1)$	82.9	19.6	83.5	72.4
Switch-Base $(d=0.1)$	84.7	19.1	83.7	73.0
Switch-Base $(d=0.2)$	84.4	19.2	83.9	73.2
Switch-Base $(d=0.3)$	83.9	19.6	83.4	70.7
Switch-Base (d= 0.1 , ed= 0.4)	85.2	19.6	83.7	73.0

Speed advantage of Switch Transformer

Switch-Base is more sample efficient than T5-Large

Switch-Base is faster than T5-Large (2.5x speedup)

... and significant downstream improvements

Model	GLUE	SQuAD	SuperGLUE	Winogrande (XL)
T5-Base	84.3	85.5	75.1	66.6
Switch-Base	86.7	87.2	79.5	73.3
T5-Large	87.8	88.1	82.7	79.1
Switch-Large	88.5	88.6	84.7	83.0
Model	\mathbf{XSum}	ANLI (R3)	ARC Easy	ARC Chal.
T5-Base	18.7	51.8	56.7	35.5
Switch-Base	20.3	54.0	61.3	32.8
T5-Large	20.9	56.6	68.8	35.5
Switch-Large	22.3	58.6	66.0	35.5
Model	CB Web QA	CB Natural QA	CB Trivia QA	
T5-Base	26.6	25.8	24.5	
Switch-Base	$\boldsymbol{27.4}$	26.8	30.7	
T5-Large	27.7	27.6	29.5	
Switch-Large	31.3	29.5	36.9	

Sparse models benefit from small batch sizes and high learning rates

<u>"ST-MoE: Designing Stable and Transferable Sparse Expert Models" by Zoph et al. (2022)</u>

Sparse models benefit from high dropout rates

"ST-MoE: Designing Stable and Transferable Sparse Expert Models" by Zoph et al. (2022)

By freezing the MoE layers, we can speed up the training while preserving the quality

"ST-MoE: Designing Stable and Transferable Sparse Expert Models" by Zoph et al. (2022)

Sparse models are prone to overfit

"ST-MoE: Designing Stable and Transferable Sparse Expert Models" by Zoph et al. (2022)

Token-choice routing

"Mixture-of-Experts with Expert Choice Routing" by Zhou et al. (2022)

Expert-choice routing

"Mixture-of-Experts with Expert Choice Routing" by Zhou et al. (2022)

Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models

Sheng Shen^{\$‡} Le Hou[†] Yanqi Zhou[†] Nan Du[†] Shayne Longpre[⊤]* Jason Wei[†],
Hyung Won Chung[†] Barret Zoph[†] William Fedus[†] Xinyun Chen[†] Tu Vu^{‡*},
Yuexin Wu[†] Wuyang Chen^{§*} Albert Webson[†] Yunxuan Li[†] Vincent Zhao[†] Hongkun Yu[†]
Kurt Keutzer^{\$} Trevor Darrell^{\$} Denny Zhou[†]

[†]Google ^bUniversity of California, Berkeley ^TMassachusetts Institute of Technology [‡]University of Massachusetts Amherst [§]The University of Texas at Austin

Mixture-of-Experts meets Instruction Tuning

When to use sparse MoEs vs dense models?

