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Logistics

e Quiz 2 & Homework 2 are postponed
e We are sending out feedback on final project proposals
e Please email us at cs5624instructors@gmail.com



mailto:cs5624instructors@gmail.com

More on benefits of parameter-efficient tuning

e Parameter-efficient transfer learning
e Multimodal learning
e Security & privacy



Soft prompt tuning
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“The Power of Scale for Parameter-Efficient Prompt Tuning” by Lester et al. (2021)



https://research.google/blog/guiding-frozen-language-models-with-learned-soft-prompts/
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Switch Transformers: Scaling to Trillion Parameter Models
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The Bitter Lesson

“The biggest lesson that can be read from 70 years of Al
research is that general methods that leverage computation are
ultimately the most effective, and by a large margin.”

Rich Sutton, 2019

Simple architectures—backed by a generous computational
budget, data set size and parameter count—surpass more
complicated algorithms



Switch Transformers

e Vanilla Transformer
o densely-activated

e Switch Transformer
o sparsely-activated expert model
o with an outrageous number of parameters—but a
constant computational cost (!)
o pretraining up to trillion parameter models and achieving
a 4x speedup over the T5-XXL (11B)
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Switch Transformers
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Mixture of Expert Routing



The MoE layer takes as an input a token representation & and then routes this to the

best determined top-k experts, selected from a set {Ez(m) ﬁil of N experts.

The router variable W, produces logits h(z) = W, - &, which are normalized via a
softmax distribution over the available IN experts at that layer. The gate value for

expert ¢ is given by:

pi(z) = 3. ehl@);

J

The top-k gate values are selected for routing the token z. If T' is the set of selected
top-k indices, then the output computation of the layer is the linearly weighted

combination of each expert's computation on the token by the gate value:

y= Zpi(m)Ei(m)



Rethinking Mixture-of-Experts

e Shazeer et al. (2017)
o routingto k > 7 experts
o intuition: learning to route would not work without the
ability to compare at least two experts
e Switch layer
o routes to only a single expert
o preserves model quality
o reduces routing computation
o performs better



https://arxiv.org/pdf/1701.06538

tokens per batch

expert capacity = X capacity factor

number of experts

Terminology : (Capacity Factor: 1.0) g (Capacity Factor: 1.5)

. Experts: Split across devices, Expert 1 Expert2  Expert3 i Expert 1 Expert2  Expert3

each having their own unique
parameters. Perform standard feed-
forward computation.

H
Device 2 H Device 0 Device 1 Device 2
.

Device 0 Device 1

. Expert Capacity: Batch size of
each expert. Calculated as

. (tokens_per_batch / num_experts) *
capacity_factor

Across Device
Communication

. Capacity Factor: Used when
calculating expert capacity. Expert
capacity allows more buffer to help
mitigate token overflow during
routing.

Device 0 Device 0

Tokens Tokens

What would happen with

the blue (dropped) token? overflow wasted computation & memory



An auxiliary load balancing loss



Given N experts indexed by ¢ = 1 to N and a batch B with T" tokens, the auxiliary

loss is computed as the scaled dot-product between vectors f and P:

loss=a-N

f;: fraction of tokens to expert i P: router probability for expert i

e For each token in the batch, check

e e The router assigns probabilities to

each expert for every token.

e Count how many times expert ; was

e e For each token, take the probability

that expert 7 i was preferred.

e Divide by the total number of

tokens 7 to get the fraction. ® Average over all tokens.

The auxiliary loss encourages uniform routing since it is
minimized under a uniform distribution



Lower standard dropout rate for non-expert layers,
higher for expert feed-forward layers

Model (dropout) GLUE CNNDM SQuAD SuperGLUE

T5-Base (d=0.1) 82.9 19.6 83.5 724
Switch-Base (d=0.1) 84.7 19.1 83.7 73.0
Switch-Base (d=0.2) 84.4 19.2 83.9 73.2
Switch-Base (d=0.3) 83.9 19.6 83.4 70.7

Switch-Base (d=0.1, ed=0.4) 85.2 19.6 83.7 73.0




Speed advantage of Switch Transformer
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Switch-Base is more sample efficient than T5-Large
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Switch-Base is faster than T5-Large (2.5x speedup)
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... and significant downstream improvements

Model GLUE SQuAD SuperGLUE  Winogrande (XL)
Tb5-Base 84.3 85.9 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
T5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 01.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
TbH-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5

Model CB Web QA CB Natural QA CB Trivia QA

T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 2770 27.6 29.5

Switch-Large 31.3 29.5 36.9




Sparse models benefit from small batch sizes and

high learning rates
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“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)



https://arxiv.org/pdf/2202.08906

Sparse models benefit from high dropout rates
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“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)



https://arxiv.org/pdf/2202.08906

By freezing the MoE layers, we can speed up the

training while preserving the quality
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“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)



https://arxiv.org/pdf/2202.08906

Sparse models are prone to overfit
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“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)



https://arxiv.org/pdf/2202.08906

Token-choice routing
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https://arxiv.org/pdf/2202.09368

Expert-choice routing
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https://arxiv.org/pdf/2202.09368

Mixture-of-Experts Meets Instruction Tuning:
A Winning Combination for Large Language Models
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Mixture-of-Experts meets Instruction Tuning
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When to use sparse MoEs vs dense models?



Thank you!



