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Logistics

● Quiz 2 & Homework 2 are postponed
● We are sending out feedback on final project proposals
● Please email us at cs5624instructors@gmail.com

mailto:cs5624instructors@gmail.com


More on benefits of parameter-efficient tuning

● Parameter-efficient transfer learning
● Multimodal learning
● Security & privacy



Soft prompt tuning

“The Power of Scale for Parameter-Efficient Prompt Tuning” by Lester et al. (2021)

https://research.google/blog/guiding-frozen-language-models-with-learned-soft-prompts/
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The Bitter Lesson

“The biggest lesson that can be read from 70 years of AI 
research is that general methods that leverage computation are 
ultimately the most effective, and by a large margin.”

Rich Sutton, 2019

Simple architectures—backed by a generous computational 
budget, data set size and parameter count—surpass more 
complicated algorithms



Switch Transformers

● Vanilla Transformer
○ densely-activated

● Switch Transformer
○ sparsely-activated expert model
○ with an outrageous number of parameters—but a 

constant computational cost (!)
○ pretraining up to trillion parameter models and achieving 

a 4x speedup over the T5-XXL (11B)







Switch Transformers The layer operates independently on the tokens



Mixture of Expert Routing





Rethinking Mixture-of-Experts

● Shazeer et al. (2017)
○ routing to k > 1 experts
○ intuition: learning to route would not work without the 

ability to compare at least two experts
● Switch layer

○ routes to only a single expert
○ preserves model quality
○ reduces routing computation 
○ performs better

https://arxiv.org/pdf/1701.06538


overflow wasted computation & memory
What would happen with 
the blue (dropped) token?



An auxiliary load balancing loss



fi: fraction of tokens to expert i

● For each token in the batch, check 
which expert got chosen.

● Count how many times expert 𝑖 was 
picked.

● Divide by the total number of 
tokens 𝑇  to get the fraction.

Pi: router probability for expert i

● The router assigns probabilities to 
each expert for every token.

● For each token, take the probability 
that expert 𝑖 i was preferred.

● Average over all tokens.

The auxiliary loss encourages uniform routing since it is 
minimized under a uniform distribution



Lower standard dropout rate for non-expert layers, 
higher for expert feed-forward layers



Speed advantage of Switch Transformer



Switch-Base is more sample efficient than T5-Large 



Switch-Base is faster than T5-Large (2.5x speedup)



… and significant downstream improvements 



Sparse models benefit from small batch sizes and 
high learning rates

“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)

https://arxiv.org/pdf/2202.08906


Sparse models benefit from high dropout rates

“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)

https://arxiv.org/pdf/2202.08906


By freezing the MoE layers, we can speed up the 
training while preserving the quality

“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)

https://arxiv.org/pdf/2202.08906


Sparse models are prone to overfit

“ST-MoE: Designing Stable and Transferable Sparse Expert Models” by Zoph et al. (2022)

250 examples 138k examples

https://arxiv.org/pdf/2202.08906


Token-choice routing

“Mixture-of-Experts with Expert Choice Routing” by Zhou et al. (2022)

https://arxiv.org/pdf/2202.09368


Expert-choice routing

“Mixture-of-Experts with Expert Choice Routing” by Zhou et al. (2022)

https://arxiv.org/pdf/2202.09368




Mixture-of-Experts meets Instruction Tuning



When to use sparse MoEs vs dense models?



Thank you!


