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Why do we want to edit LLMs?



Why do we want to edit LLMs?

e improve performance on downstream tasks
e mitigate biases or unwanted behavior
e align models with human preferences

e update models with new information



The notion of task vectors

Opeww = 0 + 7

In practice, we have an optional
scaling term A

Onew = 0 + M7




Forgetting via negation

T
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Example: making a
language model produce
less toxic content

In practice, we have an optional
scaling term A



Learning via addition

Opew =0 +7 =0+ (T4 + 7B)
=60+ (04 —0)+ (0 — 0)

In practice, we have optional
scaling terms A, A,

Example: building a
multi-task model



TaSk analogies “AistoBas CistoD”

TB — TA — Tp — TC
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Example: improving
domain generalization scaling terms A, A, A,

In practice, we have optional
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Forgetting image classification tasks via negation

Method ViT-B/32 ViT-B/16 ViT-L/14
Target () Control (1) | Target () Control (1) | Target () Control (1)
Pre-trained 48.3 63.4 55.2 68.3 64.8 75.5
Fine-tuned 90.2 48.2 92.5 58.3 94.0 72.6
Gradient ascent 2.73 0.25 1.93 0.68 3.93 16.3
Random vector 45.7 61.5 53.1 66.0 60.9 129
Negative task vector 24.0 60.9 21.3 65.4 19.0 72.9




Making language models less toxic with negative task
vectors

Method % toxic generations (|) Avg. toxicity score ({) WikiText-103 perplexity ({)
Pre-trained 4.8 0.06 16.4
Fine-tuned 57 0.56 16.6
Gradient ascent 0.0 0.45 551010
Fine-tuned on non-toxic 1.8 0.03 17.2
Random vector 4.8 0.06 16.4

Negative task vector 0.8 0.01 16.9




Adding pairs of task vectors

Normalized accuracy on Task 1
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Adding task vectors builds multi-task models
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Improving performance on target tasks with external
task vectors

Method MRPC RTE CoLA SST-2  Average
Zero-shot 74.8 52.7 8.29 92.7 57.1
Fine-tuned 88.5 77.3 52.3 94.5 78.1

Fine-tuned + task vectors 89.3 08 77.5 02 53.0@#07 94.7 +02) 78.6 (+0.5)




Improving domain generalization with task analogies

Tyelp; sent — Tamazon; sent + (Tyelp; Im — 7Tamazon: lm)

target = Yelp target = Amazon
Method TS-small TS5-base TS-large TS5-small TS5-base T5-large
Fine-tuned on auxiliary 88.6 92.3 95.0 87.9 90.8 94.8
Task analogies 89.9 93.0 95.1 89.0 92.7 95.2

Fine-tuned on target 91.1 93.4 95.5 90.2 93.2 95.5




Learning about subpopulations via analogy

Tiion indoors = Tlion outdoors (Tdog indoors — 7dog outdoor)
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Cosine similarity between task vectors
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The impact of learning rate when fine-tuning

The impact of learning rate
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How task vectors evolve throughout fine-tuning

Cos. sim. between intermediate

and final task vectors
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Linear mode connectivity

e models fine-tuned from the same pre-trained initialization



Efficient Model Development through Fine-tuning Transfer
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e.g., pretrained instruction-tuned i
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Figure 1: To transfer fine-tuning (e.g., instruction tuning) from a source model version s (e.g., Llama 3.0)
to a target version ¢ (Llama 3.1), we first compute the diff vector A; = m/, — m, from version s, where m/, is
the fine-tuned model (instruction-tuned Llama 3.0) and my is the base model (pretrained Llama 3.0). Then,
we add A; to the target base model (pretrained Llama 3.1) to approximate the fine-tuned model in version
t (instruction-tuned Llama 3.1). We explore two scenarios: (1) recycling—transferring from an older model
version to a newer one to reduce retraining, and (2) backporting—transferring from a newer version to an
older one to take advantage of the newer fine-tuning while maintaining optimization for specific use cases.



Transferring fine-tuning updates

Model GSMSK MATH ARCc: GPQA MMLU IFEval
Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6
Llama 3.0 8B 95.6 17.3 9.7 22.3 66.7 34.5
+ As 82.8 44.7 83.0 25.9 70.0 76.6
Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5
Llama 3.1 8B 96.6 19.3 79.2 21.9 66.8 36.4
+ Az 79.8 29.9 82.9 32.6 65.1 83.3

Table 1: Fine-tuning transfer significantly improves the performance of the target base model across various
tasks, achieving results comparable to its fine-tuned counterpart in many cases. Here, A3 o and Ag ; represent
the diff vectors between Llama Instruct and Llama for versions 3.0 and 3.1, respectively. Notably, adding
the diff vector Ag from a different model version can effectively transform a non-instruction-tuned model
(e.g., Llama 3.0 or Llama 3.1) into one that follows instructions well (Llama 3.0 + As; or Llama 3.1 +
Az ) without further training. Additional results for OLMo and Tiilu can be found in Appendix A, where
we additionally find that advanced LLM capabilities, attained through alignment tuning stages such as Su-
pervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), or Group Relative Policy Optimization
(GRPO), can be successfully transferred across different model versions.



Linear mode connectivity

Ml Mz M3 M4 M5

13.2 194 244 64.5 65.5

+ Ay 26.6 32.0 27.5 19.6

+ Ay 19.0 39.8 259 173

+ Ag 14.3 25.0 68.6 70.3

+ Ay 11.8 18.0 22.6 77.1
+ As 11.9 16.0 24.0 72.9

FT(M;) 45.1 50.7 604 757 755

Table 3: GSM8K accuracies indicating that more powerful models are better at leveraging transferred fine-
tuning. Effective use of transferred fine-tuning only emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer works best when the source and target models are
close within a linearly connected region of the parameter space. Here, M, represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller values of ¢ indicating earlier checkpoints), and A; refers
to the diff vector resulting from the fine-tuning of version i. FT(M;) denotes applying fine-tuning directly

to M;. See Table 11 in Appendix C for MATH500 results.



Multilingual model development

Model Malagasy Sinhala Turkish

Llama 3.0 8B Instruct 2300 233 30.8
+ FT 30.8 29.0 43.2

Llama 3.1 8B Instruct 27.6 33.0 201
+ Asp 32.3 32.3 43.2

Table 2: Recycling fine-tuning updates improves multilingual performance on Global MMLU without re-
training, yielding a 4.7% and 15.5% absolute improvement for Malagasy and Turkish, respectively, compared
to Llama 3.1 8B Instruct. Ag o represents the diff vector between Llama 3.0 Instruct and its monolingual
fine-tuned (FT) version.



What Matters for Model Merging at Scale?

AL AL TT e
s = =T == b <L
e ol . ol = o
v v _.“‘
T s Rl
L)

Prateek Tu Vu Jonathan Lai Alexandra
Chronopoulou

Manaal Faruqui Mohit Bansal Tsendsuren
Munkhdalai



What is model merging? S

| Expert A i




Why model merging?

e dramatically reduces storage and serving costs by reusing a single model
across tasks

e enables compositional combination of capabilities from expert models, which
can improve generalization to novel tasks

e supports decentralized and modular model development by allowing multiple
contributors to independently build models and later combine them together



Limitations of prior work

e Typically merges small or moderately-sized models (up to 7B parameters)
e Typically merges only 2-3 models

e Largely focuses on improving “held-in" performance on tasks the expert models
were trained for



A large-scale empirical study

e 4 important factors
o model size
m 1B, 8B, 24B, 64B
o base model quality
m Pre-trained model (PaLM) vs. Instruction-tuned (PaLM-IT)
o merging method
m Average, Task Arithmetic / Task Vectors, TIES, DARE-TIES
o number of experts
m 2,468

e Theirimpact on
o Held-In performance
o Zero-shot (Held-Out) generalization



Instruction-tuned models facilitate easier merging

Held-In Performance
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Held-In Performance

Bigger models are easier to merge
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Merging boosts zero-shot generalization

Held-Out Performance
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Held-Out Performance

Merging boosts zero-shot generalization (cont.)
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Bigger model sizes can merge more experts
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Bigger model sizes can merge more experts (cont.)

Held-Out Performance
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At large scales, merging methods converge
Held-In, 64B Held-Out, 64B

1.10 I Average [ Task Arithmetic 71 Dare-TIES EEETIES
1.10

=
o
o

XL edet 1.05 PaLM-2-IT

1.00 - -
' 0.95 -
' i 0.90
0.85 | 0.85 'l B I
0.80 080 RS

# of Experts

=

o

o
I

Normalized Metric
o o
O O
() U




Thank you!



