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Why do we need to model longer sequences?



How to model longer sequences?



FlashAttention

● Tiling and 
recomputation to reduce 
GPU memory IOs
○ Fast (3x) and 

memory efficient 
(10-20x) algorithm 
for exact attention

○ Longer sequences 
(up to 16K) yield 
higher quality

Massive adoption



Attention mechanism review
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Attention mechanism review (cont’d)
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Attention mechanism review (cont’d)
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masking out all values in 
the input of the softmax 

which correspond to 
illegal connections



Quadratic complexity

The time complexity of 
self-attention is quadratic in 

the input length O(n2)



Attention mechanism review (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Attention mechanism review (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Approximate attention

FlashAttention – Tri Dao | Stanford MLSys #67

tradeoff quality for speed fewer FLOPs

does not result in an actual wall clock speedup

https://www.youtube.com/watch?v=gMOAud7hZg4


GPU compute model & memory hierarchy

FlashAttention – Tri Dao | Stanford MLSys #67

1. Inputs start out in 
HBM (GPU memory)

3. Output written 
back to HBM

2. Data moved to 
compute units & 

SRAM for 
computation

Can we exploit the memory 
asymmetry to get speed up?

https://www.youtube.com/watch?v=gMOAud7hZg4


Data movement is the key bottleneck



How to reduce HBM reads/writes: compute by blocks

FlashAttention – Tri Dao | Stanford MLSys #67

● Challenges:
○ Compute softmax normalization without access to full input

○ Backward without the large attention matrix from forward

● Approaches:
○ Tiling: Restructure algorithm to load block by block from 

HBM to SRAM to compute attention

○ Recomputation: Don’t store attention matrix from forward, 
recompute it in the backward

https://www.youtube.com/watch?v=gMOAud7hZg4


Tiling

FlashAttention – Tri Dao | Stanford MLSys #67

● Decomposing large 
softmax into smaller ones 
by scaling

https://www.youtube.com/watch?v=gMOAud7hZg4


; denotes concatenation
note that the terms involving ea + eb + ec cancel out each other
same for the ed + ee terms
  

𝛼 𝛽A A1 A2



Tiling for matrix multiplication 

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Tiling for matrix multiplication (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Tiling for matrix multiplication (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Tiling (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

1. Load inputs by blocks from HBM to 
SRAM.

 2. On chip, compute attention output 
with respect to that block. 

 3. Update output in HBM by scaling.

https://www.youtube.com/watch?v=gMOAud7hZg4


Demo

FlashAttention – Tri Dao | Stanford MLSys #67

● https://jacksoncakes.com/flashattention-fast-and-memory-efficient-exact-attention/

https://www.youtube.com/watch?v=gMOAud7hZg4
https://jacksoncakes.com/flashattention-fast-and-memory-efficient-exact-attention/


Recomputation (backward pass)

FlashAttention – Tri Dao | Stanford MLSys #67

● By storing softmax normalization from 
forward (size N), quickly recompute 
attention in the backward from inputs 
in SRAM.

https://www.youtube.com/watch?v=gMOAud7hZg4


FlashAttention: 2-4x speedup, 10-20x memory 
reduction

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Faster Training: MLPerf Record for Training 
BERT-large

FlashAttention – Tri Dao | Stanford MLSys #67

● MLPerf: (highly optimized) standard benchmark for training 
speed

● Time to hit an accuracy of 72.0% on MLM from a fixed 
checkpoint, averaged across 10 runs on 8 x A100 GPUs

https://www.youtube.com/watch?v=gMOAud7hZg4


Faster Training, longer context

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Faster Training, longer context

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4


Thank you!


