Long-context LLMs

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

VIRGINIA TECH

FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao[†], Daniel Y. Fu[†], Stefano Ermon[†], Atri Rudra[‡], and Christopher Ré[†]

[†]Department of Computer Science, Stanford University [‡]Department of Computer Science and Engineering, University at Buffalo, SUNY {trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

Why do we need to model longer sequences?

How to model longer sequences?

FlashAttention

 Tiling and recomputation to reduce GPU memory IOs

 Fast (3x) and memory efficient (10-20x) algorithm for exact attention

Longer sequences
 (up to 16K) yield
 higher quality

Massive adoption

Attention mechanism review

all computations are parallelized

Attention mechanism review (cont'd)

all computations are parallelized

Attention mechanism review (cont'd)

masking out all values in the input of the softmax which correspond to illegal connections

Quadratic complexity

The time complexity of self-attention is quadratic in the input length O(n²)

Attention mechanism review (cont'd)

Attention mechanism review (cont'd)

O = Dropout(Softmax(Mask(**QK**^T)))**V**

Approximate attention

tradeoff quality for speed fewer FLOPs

does not result in an actual wall clock speedup

GPU compute model & memory hierarchy

Data movement is the key bottleneck

How to reduce HBM reads/writes: compute by blocks

• Challenges:

- Compute softmax normalization without access to full input
- Backward without the large attention matrix from forward

• Approaches:

- Tiling: Restructure algorithm to load block by block from HBM to SRAM to compute attention
- Recomputation: Don't store attention matrix from forward, recompute it in the backward

 Decomposing large softmax into smaller ones by scaling

softmax($[A_1, A_2]$) = $[\alpha \times \text{softmax}(A_1), \beta \times \text{softmax}(A_2)]$

softmax([
$$A_1, A_2$$
]) $\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \alpha \times \text{softmax}(A_1)V_1 + \beta \times \text{softmax}(A_2)V_2$

$$\operatorname{softmax}([a, b, c, d, e]) = \left[\frac{e^a}{e^a + e^b + e^c + e^d + e^e}, \frac{e^b}{e^a + e^b + e^c + e^d + e^e}, \frac{e^c}{e^a + e^b + e^c + e^d + e^e}, \frac{e^d}{e^a + e^b + e^c + e^d + e^e}, \frac{e^e}{e^a + e^b + e^c + e^d + e^e}\right]$$

$$\operatorname{softmax}([a,b,c,d,e]) = \left[\frac{e^a + e^b + e^c}{e^a + e^b + e^c + e^d + e^e} \cdot \left(\frac{e^a}{e^a + e^b + e^c}; \frac{e^b}{e^a + e^b + e^c}; \frac{e^c}{e^a + e^b + e^c}\right); \frac{e^d + e^e}{e^a + e^b + e^c + e^d + e^e} \cdot \left(\frac{e^d}{e^d + e^e}; \frac{e^e}{e^d + e^e}\right)\right]$$

; denotes concatenation note that the terms involving $e^a + e^b + e^c$ cancel out each other same for the $e^d + e^e$ terms

Tiling for matrix multiplication

 We can view the computation as decomposing if we consider subsets of rows/columns

$$C_{(1,1):(3,3)} = A_{(1,1):(3,9)} \times B_{(1,1):(9,3)}$$

Tiling for matrix multiplication (cont'd)

- Tiling capitalizes on this decomposition
- Each output tile is computed by multiplying a pair of input tiles and adding it to the appropriate output tile

$$C = \begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix}$$

with each $C_{ij} \in \mathbb{R}^{3 \times 3}$
 $C_{00} = A_{00}B_{00} + A_{01}B_{10} + A_{02}B_{20}$
 $C_{01} = A_{00}B_{01} + A_{01}B_{11} + A_{02}B_{21}$
 $C_{10} = A_{10}B_{00} + A_{11}B_{10} + A_{12}B_{20}$
 $C_{11} = A_{10}B_{01} + A_{11}B_{11} + A_{12}B_{21}$

C

Tiling for matrix multiplication (cont'd)

Tiling enables ٠ matrix multiplication of two very large matrices to capitalize on the small amount of fast memory on a device (e.g. GPU) Start by putting ٠ the input matrices and storage for the output matrix into large/slow memory

 Do the primary computation in slow/fast memory

Tiling (cont'd)

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to that block.

3. Update output in HBM by scaling.

• https://jacksoncakes.com/flashattention-fast-and-memory-efficient-exact-attention/

Recomputation (backward pass)

• By storing softmax normalization from forward (size N), quickly recompute attention in the backward from inputs in SRAM.

Attention	Standard	FlashAttention
GFLOPs	66.6	75.2 <mark>(个13%)</mark>
HBM reads/writes (GB)	40.3	4.4 (↓9x)
Runtime (ms)	41.7	7.3 (↓6x)

FlashAttention: 2-4x speedup, 10-20x memory reduction

Faster Training: MLPerf Record for Training BERT-large

- MLPerf: (highly optimized) standard benchmark for training speed
- Time to hit an accuracy of 72.0% on MLM from a fixed checkpoint, averaged across 10 runs on 8 x A100 GPUs

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 [58]	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

Faster Training, longer context

Faster Training, longer context

