
Long-context LLMs

Tu Vu

CS 5624: Natural Language Processing
Spring 2025

https://tuvllms.github.io/nlp-spring-2025

https://tuvllms.github.io/nlp-spring-2025

Why do we need to model longer sequences?

How to model longer sequences?

FlashAttention

● Tiling and
recomputation to reduce
GPU memory IOs
○ Fast (3x) and

memory efficient
(10-20x) algorithm
for exact attention

○ Longer sequences
(up to 16K) yield
higher quality

Massive adoption

Attention mechanism review

the

K

V

Q

the students opened their

all computations
are parallelized

Attention mechanism review (cont’d)

the

K

V

Q

the students opened their

the: 0.1

students: 0.5

opened: 0.2

their: 0.2

all computations
are parallelized

Attention mechanism review (cont’d)

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

✘✘✘
✘✘
✘

masking out all values in
the input of the softmax

which correspond to
illegal connections

Quadratic complexity

The time complexity of
self-attention is quadratic in

the input length O(n2)

Attention mechanism review (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Attention mechanism review (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Approximate attention

FlashAttention – Tri Dao | Stanford MLSys #67

tradeoff quality for speed fewer FLOPs

does not result in an actual wall clock speedup

https://www.youtube.com/watch?v=gMOAud7hZg4

GPU compute model & memory hierarchy

FlashAttention – Tri Dao | Stanford MLSys #67

1. Inputs start out in
HBM (GPU memory)

3. Output written
back to HBM

2. Data moved to
compute units &

SRAM for
computation

Can we exploit the memory
asymmetry to get speed up?

https://www.youtube.com/watch?v=gMOAud7hZg4

Data movement is the key bottleneck

How to reduce HBM reads/writes: compute by blocks

FlashAttention – Tri Dao | Stanford MLSys #67

● Challenges:
○ Compute softmax normalization without access to full input

○ Backward without the large attention matrix from forward

● Approaches:
○ Tiling: Restructure algorithm to load block by block from

HBM to SRAM to compute attention

○ Recomputation: Don’t store attention matrix from forward,
recompute it in the backward

https://www.youtube.com/watch?v=gMOAud7hZg4

Tiling

FlashAttention – Tri Dao | Stanford MLSys #67

● Decomposing large
softmax into smaller ones
by scaling

https://www.youtube.com/watch?v=gMOAud7hZg4

; denotes concatenation
note that the terms involving ea + eb + ec cancel out each other
same for the ed + ee terms

𝛼 𝛽A A1 A2

Tiling for matrix multiplication

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Tiling for matrix multiplication (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Tiling for matrix multiplication (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Tiling (cont’d)

FlashAttention – Tri Dao | Stanford MLSys #67

1. Load inputs by blocks from HBM to
SRAM.

 2. On chip, compute attention output
with respect to that block.

 3. Update output in HBM by scaling.

https://www.youtube.com/watch?v=gMOAud7hZg4

Demo

FlashAttention – Tri Dao | Stanford MLSys #67

● https://jacksoncakes.com/flashattention-fast-and-memory-efficient-exact-attention/

https://www.youtube.com/watch?v=gMOAud7hZg4
https://jacksoncakes.com/flashattention-fast-and-memory-efficient-exact-attention/

Recomputation (backward pass)

FlashAttention – Tri Dao | Stanford MLSys #67

● By storing softmax normalization from
forward (size N), quickly recompute
attention in the backward from inputs
in SRAM.

https://www.youtube.com/watch?v=gMOAud7hZg4

FlashAttention: 2-4x speedup, 10-20x memory
reduction

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Faster Training: MLPerf Record for Training
BERT-large

FlashAttention – Tri Dao | Stanford MLSys #67

● MLPerf: (highly optimized) standard benchmark for training
speed

● Time to hit an accuracy of 72.0% on MLM from a fixed
checkpoint, averaged across 10 runs on 8 x A100 GPUs

https://www.youtube.com/watch?v=gMOAud7hZg4

Faster Training, longer context

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Faster Training, longer context

FlashAttention – Tri Dao | Stanford MLSys #67

https://www.youtube.com/watch?v=gMOAud7hZg4

Thank you!

