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Scaling-up train-time compute

ARITHMETIC

LANGUAGE UNDERSTANDING

8 billion parameters

From “PaLM: Scaling Language Modeling with Pathways” by Chowdhery et al. (2022)



Test-time scaling

e Uses extra test-time compute to improve performance



Discussion: pros and cons of test-time scaling



Test-time scaling methods

e Parallel (repeated sampling)

©)
@)
©)

multiple solution attempts (run independently)
chooses the most frequent or the best response
Brown et al. (2024); Irvine et al. (2023); Levi (2024)

e Sequential

O

later computations depend on earlier ones (e.g., a long
reasoning trace)

allows it to refine each attempt based on previous outcomes
Muennighoff et al.(2025); Snell et al. (2024); Hou et al.

(2025); Lee et al. (2025)
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Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.
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Problem 2 (precision): Can we identify a correct

Problem 1 (coverage): Can we generate a correct
solution from the generated samples?

solution?

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many independent candidate
solutions for a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific

verifier (ex. unit tests for code) to select a final answer from the generated samples.



Measuring coverage

PR = # of problems

# of problems

2

=1




1 # of problems ( N;CZ-)

# of problems 1,:21 1= (]Z )

passQk =

IN': Total number of completions (outputs) generated per problem.
C;: Number of correct completions among the IN for problem z.
(N): Number of ways to choose k outputs from V.

k

chosen only from the N — C} incorrect ones).

): Number of ways to choose k outputs all of which are incorrect (i.e.,

(N—CZ'>
So, (]’f,) is the probability that you choose only incorrect outputs when
k

sampling k outputs from the N total.

Subtracting this from 1 gives the probability that at least one correct solution is in
the top-k.



Coverage increases as we scale the number of samples
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Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one generated sample)
increases as we scale the number of samples. Notably, using repeated sampling, we are able to increase the solve rate
of an open-source method from 15.9% to 56% on SWE-bench Lite.



Scaling inference time compute via repeated
sampling leads to consistent coverage gains
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Figure 3: Scaling inference time compute via repeated sampling leads to consistent coverage gains across a variety of
model sizes (70M-70B), families (Llama, Gemma and Pythia) and levels of post-training (Base and Instruct models).



Inference FLOPs

FLOPsPerToken(ContextLen) ~ 2 * (NumParameters + 2 * NumLayers * TokenDim * ContextLen)

NumPromptTokens
TotallnferenceFLOPs ~ ( Z FLOPsPerToken(t)) +
t=1
NumDecodeTokens
( Z FLOPsPerToken (¢ + NumPromptTokens) * NumCompletions)
t=1



Ideal model size depends on the task, compute
budget, and coverage requirements
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Figure 4: Comparing cost, measured in number of inference FLOPs, and coverage for Llama-3-8B-Instruct and Llama-
3-70B-Instruct. We see that the ideal model size depends on the task, compute budget, and coverage requirements.
Note that Llama-3-70B-Instruct does not achieve 100% coverage on GSM8K due to an incorrectly labelled ground
truth answer: see Appendix E.



API cost

Model (jtots(:rrll);: Number of Issues Total cost Relative
(USD) attempts solved (%) (USD)  total cost
DeepSeek-Coder-V2-Instruct 0.0072 5 29.62 10.8 1x
GPT-40 0.13 1 24.00 39 3.6x
Claude 3.5 Sonnet 0.17 1 26.70 51 4.7x

Table 1: Comparing API cost (in US dollars) and performance for various models on the SWE-bench Lite dataset
using the Moatless Tools agent framework. When sampled more, the open-source DeepSeek-Coder-V2-Instruct model
can achieve the same issue solve-rate as closed-source frontier models for under a third of the price.



Llama-3-8B-Instruct
MATH (Oracle Verifier)
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Figure 5: The relationship between coverage and the number of samples can be modelled with an exponentiated power
law for most tasks and models. We highlight that some curves, such as Llama-3-8B-Instruct on MiniF2F-MATH, do
not follow this trend closely. We show the mean and standard deviation of the error between the coverage curve and
the power law fit across 100 evenly sampled points on the log scale.



We model the logarithm of coverage ¢ as a function of the number of samples k:
log(c) ~ ak’

where a, b € R are parameters to be fitted.

To directly predict coverage ¢, we exponentiate both sides:

¢ ~ exp(ak®)



The relationship between coverage and the number of
samples modelled with an exponentiated power law
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Figure 6: Overlaying the coverage curves from different models belonging to the same family. We perform this overlay
by horizontally shifting every curve (with a logarithmic x-axis) so that all curves pass through the point (1, ¢). We pick
¢ to be the maximum pass@1 score over all models in the plot. We note that the similarity of the curves post-shifting
shows that, within a model family, sampling scaling curves follow a similar shape.
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Figure 7: Comparing coverage (performance with an oracle verifier) to mainstream methods available for picking the
correct answer (majority voting, reward model selection and reward model majority voting) as we increase the number
of samples. Although near-perfect coverage is achieved, all sample selection methods fail to reach the coverage upper
bound and saturate before reaching 100 samples. For every k value, we calculate the metric on 100 subsets of size k
then plot the mean and one standard deviation across subsets.



Pass@1l # Problems # CoT Graded Correct CoT Incorrect CoT Incorrect Ground Truth

0-10% 5 15 11 1 1 problem, 3 CoTs
10-25% 10 30 27 3 0 problems
25-75% 29 30 28 2 0 problems
75-100% 84 30 30 0 0 problems

Table 2: Human evaluation of the validity of the Chain-of-Thought reasoning in Llama-3-8B-Instruct answers to
GSMBS8K problems. 3 chains of thought were graded per problem. Even for difficult questions, where the model only
gets < 10% of samples correct, the CoTs almost always follow valid logical steps. For the model generations and
human labels, see here.



Il Problem is correct with majority voting
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Figure 8: Bar charts showing the fraction of samples (out of 10,000 samples) that are correct, for each problem in the
subsets of GSM8K and MATH we evaluate on. There is one bar per problem, and the height of the bar corresponds to
the fraction of samples that arrive at the correct answer. Bars are green if self-consistency picked the correct answer
and are red otherwise. We highlight that there are many problems with correct solutions, where the correct solutions

are sampled infrequently.



s1: Simple test-time scaling
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Test-time scaling with s1-32B
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Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B
on reasoning-intensive tasks and vary test-time compute.



s1K is a dataset of 1,000 high-quality, diverse, and
difficult questions with reasoning traces.
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s1-32B is on the sample-efficiency frontier
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Budget
forcing

(How many r in raspberry?

Question)

word "raspberry" ...
* First letter: 'r' - Thisis an 'r', count = 1.

* Sixth letter: 'e' - Not an 'r', count remains

* Eighth letter: 'y' - Not an 'r', count remain
The number of 'r's in "raspberry" is 2.

in raspberry?" ... *r-a-s-p-b-e-r-r-y
Qecond 'r' ... * Third 'r' ... Count =3 ...

ﬁet's break down the process of counting the letter 'r' in the\

* Second letter; 'a' - Not an 'r', count remains 1 ...

* Seventh letter; 'r' - Thisisan 'r', count = 2.

Wait, let's re-read the question carefully. It asks "How many r

1.

S2..

P o [ o
Reasoning trace /

the word. Final Answer: The final answer is

3 Response

Q/Iy initial answer of 2 was incorrect due to a quick reading (5




For each method under consideration, we evaluate a set of tasks a € A by varying the
test-time compute on a fixed benchmark (e.g., AIME24). This yields a piecewise linear
function f, where the x-axis represents compute (measured in thinking tokens) and the

y-axis corresponds to accuracy.

Control

1
Al

Control = Z I(amin < @ < @Gmax)

acA

This measures the proportion of evaluations whose test-time compute (in thinking
tokens) falls within a specified range [amin, amax]. In practice, we often constrain only
amax- AS thinking tokens reflect test-time compute, this metric quantifies how well a
method supports controllability over computational cost. We report Control as a

percentage, with 100% indicating perfect control.



Scaling

Scaling = T Z f(b) — f(a)
(2 ai)b>E.A b—a

This captures the average slope of the piecewise linear function f, representing the
relationship between compute and accuracy. A positive slope is necessary, and higher

values indicate better scaling behavior.



Performance

Performance = max f(a)
acA

This is the highest accuracy achieved across all levels of test-time compute. In the

limit, a method with consistently positive scaling will approach 100% performance.



Budget forcing shows clear scaling trends and
extrapolates to some extent
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(a) Sequential scaling via budget forcing



Parallel scaling via majority voting
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s1-32B is a strong
open reasoning model

AIME MATH GPQA
Model #eX- 2024 500 Diamond
API only

ol-preview N.A. 44.6 85.5 73.3
ol-mini N.A. 70.0 90.0 60.0
ol N.A. 74.4 94.8 773
Gemini 2.0

Flash Think. N.A. 60.0 N.A. N.A.

Open Weights

Qwen2.5-

30B-Instruct N.A. 26.7 84.0 49.0
QwQ-32B N.A. 50.0 90.6 54.5
rl >800K 79.8 97.3 71.5
r1-distill 800K 72.6 94.3 62.1

Open Weights and Open Data

Sky-T1 17K 43.3 82.4 56.8
Bespoke-32B 17K 63.3 93.0 58.1
s1 w/o BF 1K 50.0 92.6 56.6
s1-32B 1K 56.7 93.0 59.6




s1K data ablations

AIME MATH GPQA

Model 2024 500 Diamond

1Korandom 36.7 90.6 52.0
[-26.7%, -3.3%]  [-4.8%,0.0%] [-12.6%,2.5%]

1K-diverse 26.7 91.2 54.6
[-40.0%, -10.0%]  [-4.0%,02%]  [-10.1%, 5.1%]

IK-longest 33.3 90.4 59.6
[-36.7%, 0.0%]  [-5.0%,-02%] [-5.1%, 10.1%]

5OK-full 53.3 92.8 58.1
[-13.3%,20.0%]  [-2.6%,22%]  [-6.6%, 8.6%]

s1K 50.0 93.0 57.6




Ablations on methods to scale test-time compute

Method Control Scaling Performance |.A]|
BF 100% 15 56.7 5
TCC 40% -24 40.0 5
TCC+ BF | 100% 13 40.0 3
SCC 60% 3 36.7 5
SCC+BF | 100% 6 36.7 5
CCC 50% 25 36.7 2
RS 100% -35 40.0 5




Budget forcing extrapolation ablations

AIME MATH GPQA

Model 2024 500  Diamond
No extrapolation 50.0 93.0 57.6
2x without string 50.0 90.2 35.1
2x “Alternatively” | 50.0 92.2 59.6
2x “Hmm” 50.0 93.0 59.6
2x “Wait” 53.3 93.0 59.6




Rejection sampling
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Augmenting s1 with REBASE (process reward model)
60
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Why does supervised fine-tuning on just 1,000
samples lead to such performance gains?

e We hypothesize that the model is already exposed to large
amounts of reasoning data during pretraining which spans
trillions of tokens.

e Thus, the ability to perform reasoning is already present in
our model.

e Our sample-efficient fine-tuning stage just activates it and
we scale it further at test time with budget forcing.



Superficial Alignment Hypothesis

e LIMA: Less is more for alignment (Zhou et al., 2023)
o 1,000 examples can be sufficient to align a model to
adhere to user preferences



https://arxiv.org/abs/2305.11206

Thank you!



