Language modeling

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

VIRGINIA TECH

Office hours

- Instructor: Tu Vu
 - **Office hours:** Thursday 3:00 4:00 PM, <u>D&DS</u> 374
- Teaching Assistant: Rishab Balasubramanian
 Office hours: Monday 1:00 2:00 PM, <u>D&DS</u> 260E

Office hours (both in-person and via Zoom) will start next Monday, January 27th. Zoom links will be posted on Piazza.

Final project

- The class size has exceeded 50 students and is still growing
- Groups of 2-3 4-5; all groups should be formed by January 31st
- A Google form for submitting group information will be available next week
- Search for teammates on Piazza <u>https://piazza.com/class/m63qacreewc2fs/post/5</u>

or reach out to us at cs5624instructors@gmail.com

Homework

• Homework 0 will be released tomorrow (due February 7th)

Reminder

- Conditional probability $P(B|A) = rac{P(A,B)}{P(A)}$ Rewriting P(A,B) = P(A) imes P(B|A)
- Chain rule

$$egin{aligned} P(X_1, X_2, \dots, X_n) &= P(X_1, X_2, \dots, X_{n-1}) imes P(X_n | X_1, X_2, \dots, X_{n-1}) \ &= P(X_1, X_2, \dots, X_{n-2}) imes P(X_{n-1} | X_1, X_2, \dots, X_{n-2}) imes P(X_n | X_1, X_2, \dots, X_{n-1}) \ &= P(X_1) imes P(X_2 | X_1) imes \dots imes P(X_n | X_1, X_2, \dots, X_{n-1}) \end{aligned}$$

 $P(w_1,w_2,\ldots,w_n)=P(w_1) imes P(w_2|w_1) imes\ldots imes P(w_n|w_1,w_2,\ldots,w_{n-1})$

The development of modern LLMs

Language modeling

• Predicting the next/missing word

Example: "The cat is on the $__$." \rightarrow Predicted: "mat".

What is a language model?

• A machine learning model that assigns a *probability* to each possible next word, or a *probability distribution* over possible next words

What is a language model? (cont'd)

• A language model can also assign a probability to an entire sentence

 $P(w_1,w_2,\ldots,w_n)=P(w_1) imes P(w_2|w_1) imes\ldots imes P(w_n|w_1,w_2,\ldots,w_{n-1})$

P("The cat is on the mat") = P("The") x P("cat" | "The") x P("is" | "The cat") x P("on" | "The cat is") x P("the" | "The cat is on") x P("mat" | "The cat is on the")

You use language models everyday!

9:41 New iMessage Cancel To: Armando Cajide	Goo	ogle	
+ Hi! I'm heading to the store "store" stores store's q W e r t y u i o p a s d f g h j k I $rac{123}{space}$ return	san f san francisco weather san francisco san francisco giants san fernando valley san francisco state university san francisco hotels san francisco 49ers san fernando san fernando mission san francisco zip code		Ļ
₩ 	Google Search	I'm Feeling Lucky	

Two categories of language models

- Statistical language models
 - N-gram / Count-based language models

• Neural language models (e.g., ChatGPT, Gemini)

N-grams

- An n-gram is a sequence of n words
- Unigram (n=1)
 - "The", "water", "of", "Walden", "Pond"
- Bigram (n=2)
 - "The water", "water of", "of Walden", "Pond"
- Trigram (n=3)
 - "The water of", "water of Walden", "of Walden Pond"
- 4-gram

N-grams (cont'd)

- Notation
 - word type: a unique word in our vocabulary
 - **token**: an individual occurrence of a word type
 - Example: "I am Sam. Sam am I. I do not like green eggs and ham."
 - \rightarrow one word type of "I", three tokens of "I"

N-grams (cont'd)

• How to compute the probabilities?

 $P(w_1,w_2,\ldots,w_n)=P(w_1) imes P(w_2|w_1) imes\ldots imes P(w_n|w_1,w_2,\ldots,w_{n-1})$

Count("The water of Walden Pond is so beautifully")

What is the problem with this approach?

The Markov assumption

- n-gram model: Approximate the prefix by just the last n-1 words
- bigram (n=2) model

• trigram (n=3) model

The Markov assumption (cont'd)

• unigram model $P(w_1, w_2, \dots, w_n) = P(w_1) imes P(w_2|w_1) imes \dots imes P(w_n|w_1, w_2, \dots, w_{n-1}) \ pprox P(w_1) imes P(w_2) imes \dots imes P(w_n) \ = \prod_{k=1}^n P(w_k)$

• bigram model $P(w_1,w_2,\ldots,w_n)pprox P(w_1) imes P(w_2|w_1) imes\cdots imes P(w_n|w_{n-1}) = \prod_{k=1}^n P(w_k|w_{k-1})$

Maximum likelihood estimation (MLE)

$$P(w_n|w_{n-1}) = rac{Count(w_{n-1}w_n)}{\sum_w Count(w_{n-1}w)} = rac{Count(w_{n-1}w_n)}{Count(w_{n-1})}$$
 $<$ s> I am Sam relative frequency
 $<$ s> Sam I am $<$ s> I do not like green eggs and ham

Here are the calculations for some of the bigram probabilities

$$P(I|~~) = \frac{2}{3} = 0.67 \qquad P(Sam|~~) = \frac{1}{3} = 0.33 \qquad P(am|I) = \frac{2}{3} = 0.67 P(~~|Sam) = \frac{1}{2} = 0.5 \qquad P(Sam|am) = \frac{1}{2} = 0.5 \qquad P(do|I) = \frac{1}{3} = 0.33~~$$

• From a restaurant corpus

"can you tell me about any good cantonese restaurants close by"

- "tell me about chez panisse"
- "i'm looking for a good place to eat breakfast"

"when is caffe venezia open during the day"

Examp	le (co	ont'd)							unigra	ım ts
	i	want	to	eat	chi	nese	food	lunch	spend		
	2533	927	2417	746	158		1093	341	278		
	target										
prefix		i	wa	nt 1	to	eat	chin	ese f	ood lu	nch s	pend
	i	5	827)	9	0	0	0	2	
	want	2	0	(508	1	6	6	5	1	
want	to	2	0	4	4	686	2	0	6	2	.11
followed	eat	0	0		2	0	16	2	42	2 0)
i 827	chines	e 1	0	()	0	0	8	2 1	0)
times	food	15	5 0		15	0	1	4	. 0	0)
	lunch	2	0	()	0	0	1	0	0)
	spend	1	0		1	0	0	0	0	0)

Example (cont'd)

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Here are a few other useful probabilities:

P(i| < s >) = 0.25P(food|english) = 0.5P(english|want) = 0.0011

P(</s>|food) = 0.68

 $P(\langle s \rangle i want english food \langle s \rangle)$

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

 $= \ 0.25 \times 0.33 \times 0.0011 \times 0.5 \times 0.68$

= 0.000031

Example (cont'd)

sparsity issue

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0,0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

How to sample sentences from a language model?

- Decoding strategies
 - Greedy decoding
 - Sampling
- Others (future lecture) 1.0 students opened their - LM - 0.0

Sample generations

1	-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
gram	-Hill he late speaks; or! a more to leg less first you enter
2 gram	-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.-What means, sir. I confess she? then all sorts, he is trim, captain.
3 gram	-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.-This shall forbid it should be branded, if renown made it empty.
4 gram	 -King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; -It cannot be but so.
Figure 3.4	Eight sentences randomly generated from four n-grams computed from Shakespeare's works. All

characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected for capitalization to improve readability.

Is a 4-gram model sufficient for language modeling?

• In general, this is insufficient for language because it fails to account for **long-distance dependencies**.

Example: "The computer which I had just put into the machine room on the fifth floor <u>crashed</u>."

Should we increase the value of n?

- As n increases, the number of possible n-grams grows exponentially (many n-grams have insufficient or no data)
- Storing and processing large n-grams requires more memory and computational power
- Beyond a certain point, increasing n may not yield significant performance improvements, especially if the dataset does not contain sufficient examples of longer n-grams

Shakespeare as corpus

- T=884,647 tokens, V=29,066
- Shakespeare produced 300,000 bigram types out of V²= 844,000,000 possible bigrams.
- 99.96% of the possible bigrams have zero entries in the bigram table (were never seen)!

Evaluating language models

Never train on the test set!

Subscribe

Susan Zhang 🤣 @suchenzang

3

Subscribe 🗙 …

MBPP might've also been used somewhere in the Phi-1.5 dataset.

Just like we truncated one of the GSM8K problems, let's try truncating the MBPP prompts to see what Phi-1.5 will autocomplete with.

[h/t to @drjwrae for suggesting this too: x.com/drjwrae/status...]

👮 📃 Part 2

Susan Zhang 🥺 @suchenzang · Sep 12, 2023 I think Phi-1.5 trained on the benchmarks. Particularly, GSM8K.

👮 🧵 x.com/suchenzang/sta...

Figure 1: Benchmark results comparing **phi-1.5**, its version enhanced with filtered web data **phi-1.5-web**, and other state-of-the-art open-source LLMs. Sizes range from **phi-1.5**'s 1.3 billion parameters (Falcon-RW-1.3B [PMH'23]) to 10x larger models like Vicuna-13B [ZCS'23], a fine-tuned version of Llama-13B [TL'23]. Benchmarks are broadly classified into three categories: common sense reasoning, language skills, and multi-step reasoning. The classification is meant to be taken loosely, for example while HellaSwag requires common sense reasoning, i arguably relies more on "memorized knowledge". One can see that **phi-1.5** models perform comparable in common sense reasoning and language skills, and vastly exceeds other models in multi-step reasoning. Note that the numbers are from our own evaluation pipeline, to ensure consistency between models, and thus they might differ slightly from numbers reported elsewhere.

I think Phi-1.5 trained on the benchmarks. Particularly, GSM8K.

Figure 1: Benchmark results comparing **phi-1.5**, its version enhanced with filtered web data **phi-1.5-web**, and other state-of-the-art open-source LLMs. Sizes range from **phi-1.5's** 1.3 billion parameters (Falcon-RW-1.3B [PMH+23]) to 10x larger models like Vicuna-13B [ZCS+23], a fine-tuned version of Llama-13B [TLI+23]). Benchmarks are broadly classified into three categories: common sense reasoning, language skills, and multi-step reasoning, it arguably relies more on "memorized knowledge". One can see that **phi-1.5** models perform comparable in common sense reasoning and language skills, and vastly exceeds other models in multi-step reasoning. Note that the numbers are from our own evaluation pipeline, to ensure consistency between models, and thus they might differ slightly from numbers reported elsewhere.

🜒 Susan Zhang 🤣 @suchenzang · Aug 2, 2023

Never trust a result in 2023 that doesn't mention the risk of dataset contamination. x.com/mathemagic1an/...

Perplexity

Or we can use the chain rule to expand the probability of *W*:

perplexity(W) =
$$\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

Perplexity as Weighted Average Branching Factor

Suppose a sentence consists of random digits.
 What is the perplexity of this sentence for a model that assigns a probability of 1/10 to each digit?

Lower perplexity = Better language model

In practice, we use log probs

$$log \prod p(w_i|w_{i-1}) = \sum logp(w_i|w_{i-1})$$

logs to avoid numerical underflow

sentence: I love love love love love the movie

 $p(i) \cdot p(love)^5 \cdot p(the) \cdot p(movie) = 5.95374181e-7$ $\log p(i) + 5 \log p(love) + \log p(the) + \log p(movie)$

= -14.3340757538

source: Mohit lyyer

In practice, we use log probs (cont'd)

$$perplexity(W) = exp(-rac{1}{N}\sum_{i}^{N}logp(w_{i}|w_{< i}))$$

perplexity is the exponentiated token-level negative log-likelihood

Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens

https://arxiv.org/pdf/2401.17377

