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Office hours

● Instructor: Tu Vu
○ Office hours: Thursday 3:00 - 4:00 PM, D&DS 374

● Teaching Assistant: Rishab Balasubramanian
○ Office hours: Monday 1:00 - 2:00 PM, D&DS 260E

Office hours (both in-person and via Zoom) will start next 
Monday, January 27th. Zoom links will be posted on 
Piazza.

https://www.google.com/maps/place/727+Prices+Fork+Rd,+Blacksburg,+VA+24060/@37.2315234,-80.4307853,17z/
https://www.google.com/maps/place/727+Prices+Fork+Rd,+Blacksburg,+VA+24060/@37.2315234,-80.4307853,17z/


Final project

● The class size has exceeded 50 students and is still growing
● Groups of 2-3 4-5; all groups should be formed by January 

31st

● A Google form for submitting group information will be 
available next week

● Search for teammates on Piazza 
https://piazza.com/class/m63qacreewc2fs/post/5

or reach out to us at cs5624instructors@gmail.com

https://piazza.com/class/m63qacreewc2fs/post/5
mailto:cs5624instructors@gmail.com


Homework

● Homework 0 will be released tomorrow (due February 7th)



Reminder

● Conditional probability

      Rewriting

● Chain rule



The development of modern LLMs

instruction 
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Language modeling

● Predicting the next/missing word

Example: “The cat is on the ___.” → Predicted: “mat”.



What is a language model?

● A machine learning model that assigns a probability to each 
possible next word, or a probability distribution over 
possible next words

students opened their LM

books laptops

1.0

0.0



What is a language model? (cont’d)

● A language model can also assign a probability to an entire 
sentence

P(“The cat is on the mat”) > P(“On the mat, the cat is”) 

P(“The cat is on the mat”) = P(“The”) x P(“cat” | “The”) x P(“is” | 
“The cat”) x P(“on” | “The cat is”) x P(“the” | “The cat is on”) x 
P(“mat” | “The cat is on the”) 



You use language models everyday!

10source: Apple Support source: Google Blog

prefix

https://support.apple.com/en-us/HT207525
https://blog.google/products/search/how-google-autocomplete-works-search/


Two categories of language models

● Statistical language models
○ N-gram / Count-based language models

● Neural language models (e.g., ChatGPT, Gemini)



N-grams

● An n-gram is a sequence of n words
● Unigram (n=1)

○ “The”, “water”, “of”, “Walden”, “Pond”
● Bigram (n=2)

○ “The water”, “water of”, “of Walden”, “Pond”
● Trigram (n=3)

○ “The water of”, “water of Walden”, “of Walden Pond”
● 4-gram
● …



N-grams (cont’d)

● Notation
○ word type: a unique word in our vocabulary
○ token: an individual occurrence of a word type

Example: “I am Sam. Sam am I. I do not like green eggs and 
ham.”

→ one word type of “I”, three tokens of “I”



N-grams (cont’d)

● How to compute the probabilities?

P(“blue” | “The water of Walden Pond is so beautifully”)
=

Count(“The water of Walden Pond is so beautifully blue”)

Count(“The water of Walden Pond is so beautifully”)

What is the problem with this approach?



The Markov assumption

● n-gram model: Approximate the prefix by just the last n-1 
words 

● bigram (n=2) model

P(“blue” | “The water of Walden Pond is so beautifully”) 
= P(“blue” | beautifully”)

● trigram (n=3) model

P(“blue” | “The water of Walden Pond is so beautifully”) 
= P(“blue” | so beautifully”)



The Markov assumption (cont’d)

● unigram model

● bigram model



Maximum likelihood estimation (MLE)

relative frequency

source: Jurafsky and Martin



Example

● From a restaurant corpus

“can you tell me about any good cantonese restaurants 
close by” 

“tell me about chez panisse” 

“i’m looking for a good place to eat breakfast” 

“when is caffe venezia open during the day”

source: Jurafsky and Martin



Example (cont’d)

prefix

target

unigram 
counts

want 
followed 

i 827 
times

source: Jurafsky and Martin



Example (cont’d) 827/2533

source: Jurafsky and Martin



Example (cont’d) sparsity  
issue 

source: Jurafsky and Martin



How to sample sentences from a language model?

● Decoding strategies
○ Greedy decoding
○ Sampling
○ Others (future lecture)

students opened their LM

books laptops
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Sample generations

from King John

source: Jurafsky and Martin



Is a 4-gram model sufficient for language modeling?

● In general, this is insufficient for language because it fails to 
account for long-distance dependencies.

Example: “The computer which I had just put into the 
machine room on the fifth floor crashed.”

source: Mohit Iyyer



Should we increase the value of n?

● As n increases, the number of possible n-grams grows 
exponentially (many n-grams have insufficient or no data)

● Storing and processing large n-grams requires more memory and 
computational power

● Beyond a certain point, increasing n may not yield significant 
performance improvements, especially if the dataset does not 
contain sufficient examples of longer n-grams



Shakespeare as corpus

● T=884,647 tokens, V=29,066
● Shakespeare produced 300,000 bigram types out of V2= 

844,000,000 possible bigrams.
● 99.96% of the possible bigrams have zero entries in the 

bigram table (were never seen)!



Evaluating language models

Train Dev Validation

Test usually used 
interchangeably



Never train on the test set!



Perplexity

We normalize by the 
number of words N by 

taking the Nth root



Perplexity as Weighted Average Branching Factor

● Suppose a sentence consists of random digits.
What is the perplexity of this sentence for a model that 
assigns a probability of 1/10  to each digit?



Lower perplexity = Better language model

source: Jurafsky and Martin



In practice, we use log probs

logs to avoid 
numerical underflow

source: Mohit Iyyer



In practice, we use log probs (cont’d)

perplexity is the 
exponentiated token-level 

negative log-likelihood



Infini-gram: Scaling Unbounded n-gram Language 
Models to a Trillion Tokens

https://arxiv.org/pdf/2401.17377

https://arxiv.org/pdf/2401.17377


Thank you!


