
Language modeling

Tu Vu

CS 5624: Natural Language Processing
Spring 2025

https://tuvllms.github.io/nlp-spring-2025

https://tuvllms.github.io/nlp-spring-2025

Office hours

● Instructor: Tu Vu
○ Office hours: Thursday 3:00 - 4:00 PM, D&DS 374

● Teaching Assistant: Rishab Balasubramanian
○ Office hours: Monday 1:00 - 2:00 PM, D&DS 260E

Office hours (both in-person and via Zoom) will start next
Monday, January 27th. Zoom links will be posted on
Piazza.

https://www.google.com/maps/place/727+Prices+Fork+Rd,+Blacksburg,+VA+24060/@37.2315234,-80.4307853,17z/
https://www.google.com/maps/place/727+Prices+Fork+Rd,+Blacksburg,+VA+24060/@37.2315234,-80.4307853,17z/

Final project

● The class size has exceeded 50 students and is still growing
● Groups of 2-3 4-5; all groups should be formed by January

31st

● A Google form for submitting group information will be
available next week

● Search for teammates on Piazza
https://piazza.com/class/m63qacreewc2fs/post/5

or reach out to us at cs5624instructors@gmail.com

https://piazza.com/class/m63qacreewc2fs/post/5
mailto:cs5624instructors@gmail.com

Homework

● Homework 0 will be released tomorrow (due February 7th)

Reminder

● Conditional probability

 Rewriting

● Chain rule

The development of modern LLMs

instruction
following

creativity

factuality safety

code math

…

pretraining

post-training
Supervised Fine-Tuning (SFT) / Reinforcement Learning (RL)

one or more
stagesw/ a language

modeling objective

Language modeling

● Predicting the next/missing word

Example: “The cat is on the ___.” → Predicted: “mat”.

What is a language model?

● A machine learning model that assigns a probability to each
possible next word, or a probability distribution over
possible next words

students opened their LM

books laptops

1.0

0.0

What is a language model? (cont’d)

● A language model can also assign a probability to an entire
sentence

P(“The cat is on the mat”) > P(“On the mat, the cat is”)

P(“The cat is on the mat”) = P(“The”) x P(“cat” | “The”) x P(“is” |
“The cat”) x P(“on” | “The cat is”) x P(“the” | “The cat is on”) x
P(“mat” | “The cat is on the”)

You use language models everyday!

10source: Apple Support source: Google Blog

prefix

https://support.apple.com/en-us/HT207525
https://blog.google/products/search/how-google-autocomplete-works-search/

Two categories of language models

● Statistical language models
○ N-gram / Count-based language models

● Neural language models (e.g., ChatGPT, Gemini)

N-grams

● An n-gram is a sequence of n words
● Unigram (n=1)

○ “The”, “water”, “of”, “Walden”, “Pond”
● Bigram (n=2)

○ “The water”, “water of”, “of Walden”, “Pond”
● Trigram (n=3)

○ “The water of”, “water of Walden”, “of Walden Pond”
● 4-gram
● …

N-grams (cont’d)

● Notation
○ word type: a unique word in our vocabulary
○ token: an individual occurrence of a word type

Example: “I am Sam. Sam am I. I do not like green eggs and
ham.”

→ one word type of “I”, three tokens of “I”

N-grams (cont’d)

● How to compute the probabilities?

P(“blue” | “The water of Walden Pond is so beautifully”)
=

Count(“The water of Walden Pond is so beautifully blue”)

Count(“The water of Walden Pond is so beautifully”)

What is the problem with this approach?

The Markov assumption

● n-gram model: Approximate the prefix by just the last n-1
words

● bigram (n=2) model

P(“blue” | “The water of Walden Pond is so beautifully”)
= P(“blue” | beautifully”)

● trigram (n=3) model

P(“blue” | “The water of Walden Pond is so beautifully”)
= P(“blue” | so beautifully”)

The Markov assumption (cont’d)

● unigram model

● bigram model

Maximum likelihood estimation (MLE)

relative frequency

source: Jurafsky and Martin

Example

● From a restaurant corpus

“can you tell me about any good cantonese restaurants
close by”

“tell me about chez panisse”

“i’m looking for a good place to eat breakfast”

“when is caffe venezia open during the day”

source: Jurafsky and Martin

Example (cont’d)

prefix

target

unigram
counts

want
followed

i 827
times

source: Jurafsky and Martin

Example (cont’d) 827/2533

source: Jurafsky and Martin

Example (cont’d) sparsity
issue

source: Jurafsky and Martin

How to sample sentences from a language model?

● Decoding strategies
○ Greedy decoding
○ Sampling
○ Others (future lecture)

students opened their LM

books laptops

1.0

0.0

Sample generations

from King John

source: Jurafsky and Martin

Is a 4-gram model sufficient for language modeling?

● In general, this is insufficient for language because it fails to
account for long-distance dependencies.

Example: “The computer which I had just put into the
machine room on the fifth floor crashed.”

source: Mohit Iyyer

Should we increase the value of n?

● As n increases, the number of possible n-grams grows
exponentially (many n-grams have insufficient or no data)

● Storing and processing large n-grams requires more memory and
computational power

● Beyond a certain point, increasing n may not yield significant
performance improvements, especially if the dataset does not
contain sufficient examples of longer n-grams

Shakespeare as corpus

● T=884,647 tokens, V=29,066
● Shakespeare produced 300,000 bigram types out of V2=

844,000,000 possible bigrams.
● 99.96% of the possible bigrams have zero entries in the

bigram table (were never seen)!

Evaluating language models

Train Dev Validation

Test usually used
interchangeably

Never train on the test set!

Perplexity

We normalize by the
number of words N by

taking the Nth root

Perplexity as Weighted Average Branching Factor

● Suppose a sentence consists of random digits.
What is the perplexity of this sentence for a model that
assigns a probability of 1/10 to each digit?

Lower perplexity = Better language model

source: Jurafsky and Martin

In practice, we use log probs

logs to avoid
numerical underflow

source: Mohit Iyyer

In practice, we use log probs (cont’d)

perplexity is the
exponentiated token-level

negative log-likelihood

Infini-gram: Scaling Unbounded n-gram Language
Models to a Trillion Tokens

https://arxiv.org/pdf/2401.17377

https://arxiv.org/pdf/2401.17377

Thank you!

