Neural language models

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

VIRGINIA TECH

• Office hours (both in-person and via Zoom) have started this week. Zoom links are available on Piazza.

• HW0 was released on Piazza (due February 7th)

Final project

- Groups of 2-3 4-5; all groups should be formed by this Friday, January 31st
- A Google form for submitting group information will be available on Piazza after today's lecture
- Search for teammates on Piazza <u>https://piazza.com/class/m63qacreewc2fs/post/5</u>

or reach out to us at cs5624instructors@gmail.com

Final project (cont'd)

- Two deliverables:
 - 10% project proposal: 3+ pages, due February 21st
 - 30% final report: 8+ pages, due last day of classes

Final project ideas

- New challenging datasets
 - Instruction following, factuality, attribution, reasoning, math, code, safety, etc.
 - E.g., Humanity's Last Exam <u>https://arxiv.org/abs/2501.14249</u>

Accuracy of LLMs Across Benchmarks

Models

- Revisit inverse scaling tasks
 - <u>https://www.lesswrong.com/posts/iznohbCPFkeB9kAJ</u>
 <u>L/inverse-scaling-prize-round-1-winners</u>
 - <u>https://www.lesswrong.com/posts/DARiTSTx5xDLQGrrz</u>
 <u>/inverse-scaling-prize-second-round-winners</u>

• SemEval-2025 tasks

https://semeval.github.io/SemEval2025/tasks.html

- \circ semantic relations
- LLM capabilities
- fact checking and knowledge verification
- knowledge representation and reasoning

• Replicate DeepSeek-R1?

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI

research@deepseek.com

https://github.com/deepseek-ai/DeepSeek-R1/bl ob/main/DeepSeek_R1.pdf

Imarena.ai (formerly Imsys.org) 🤣 @lmarena_ai

Breaking News: DeepSeek-R1 surges to the top-3 in Arena

Now ranked #3 Overall, matching the top reasoning model, o1, while being 20x cheaper and open-weight!

Highlights:

- #1 in technical domains: Hard Prompts, Coding, Math
- Joint #1 under Style Control
- MIT-licensed

A massive congrats to $@deepseek_ai$ for this incredible milestone and gift to the community! More analysis below \P

Category		Apply filter		Overall Questior	าร		
Overall •		Style Control Show Deprecate	Style Control Show Deprecated		#models: 195 (100%) #votes: 2,572,591 (100%)		
Rank* (UB) 🔺	De Rank (StyleCtrl)	epSeek-R1 #3 in	Arena Score	95% CI	Votes	Organization	
1	1	Gemini-Exp-1206	1374	+5/-4	22116	Google	
1	3	Gemini-2.0-Flash-Thinking-Exp-01-21	1382	+8/-6	6437	Google	
3	1	ChatGPT-40-latest (2024-11-20)	1365	+4/-4	35328	OpenAI	
3	1	DeepSeek-R1	1357	+12/-13	1883	DeepSeek	
4	1	01-2024-12-17	1352	+6/-6	9230	OpenAI	
4	5	Gemini-2.0-Flash-Exp	1356	+4/-4	20939	Google	

x1 ...

Denny Zhou 🤡 @denny_zhou

×1 …

Reply

ţţ

仚

AGI is finally democratized: RLHF isn't just for alignment—it's even more fun when used to unlock reasoning. Once guarded by a small circle in Silicon Valley, now the secret is for everyone.

C 487

2:05 PM · Jan 25, 2025 · 41.5K Views

◯ 18

1 51

118

Thread

Junxian He @junxian he

We replicated the DeepSeek-R1-Zero and DeepSeek-R1 training on 7B model with only 8K examples, the results are surprisingly strong.

💋 Starting from Qwen2.5-Math-7B (base model), we perform RL on it directly. No SFT, no reward model, just 8K MATH examples for verification, the resultant model achieves (pass@1) 33.3% on AIME, 62.5% on AMC, and 77.2% on MATH, outperforming Qwen2.5-math-7Binstruct and being comparable to PRIME and rStar-MATH that use >50x more data and more complicated components. 💋 Increased CoT length and self-reflection emerge

We share the details and our findings in the blog: hkust-nlp.notion.site/simplerl-reason

Training code and implementation details here: github.com/hkustnlp/simp...

3 Model and 8K Examples: Emergin easoning with Reinforcement earning is Both Effective and ficient

uzhen Huang*, Wei Liu, Keging He, Qian Liu, Zeiun Ma, Junxian He* b: https://github.com/hkust-nlp/simpleRL-reason

https://x.com/junxian_he/status/1883183099787 571519

×1 ···

A recap on language modeling

• Predict **the next word**, or a **probability distribution** over possible next words

A recap on language modeling (cont'd)

- Language models
 - compute

$$P(w_1, w_2, \ldots, w_n)$$

or

$$P(w_j|w_1,w_2,\ldots,w_{j-1})$$

 $P(w_1,w_2,\ldots,w_n)=P(w_1) imes P(w_2|w_1) imes\ldots imes P(w_n|w_1,w_2,\ldots,w_{n-1})$

N-gram language models

• Use maximum likelihood estimation (MLE)

P("laptops" | "students opened their") =

Count("students opened their laptops")

Count("students opened their")

Problems with n-gram language models

P("laptops" | "students opened their") =

Count("students opened their laptops")

Count("students opened their")

What if "students opened their laptops" never occurred in training data?

Problems with n-gram language models (cont'd)

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Need to store Vⁿ counts for an n-gram model!

source: Jurafsky and Martin

Problems with n-gram language models (cont'd)

- Treat semantically similar prefixes independently of each other
 - "students opened their ____"
 - "pupils opened their ____"
 - "scholars opened their ____"
 - "students began reading their ____"

Shouldn't we share information across these prefixes?

Word representations / embeddings

#What is the vector representation for a word? w2v_model['computer']

$\overline{\rightarrow}$	array([1.07421875e-01,	-2.01171875e-01,	1.23046875e-01,	2.11914062e-01,
_	-9.13085938e-02,	2.16796875e-01,	-1.31835938e-01,	8.30078125e-02,
	2.02148438e-01,	4.78515625e-02,	3.66210938e-02,	-2.45361328e-02,
	2.39257812e-02,	-1.60156250e-01,	-2.61230469e-02,	9.71679688e-02,
	-6.34765625e-02,	1.84570312e-01,	1.70898438e-01,	-1.63085938e-01,
	-1.09375000e-01,	1.49414062e-01,	-4.65393066e-04,	9.61914062e-02,
	1.68945312e-01,	2.60925293e-03,	8.93554688e-02,	6.49414062e-02,
	3.56445312e-02,	-6.93359375e-02,	-1.46484375e-01,	-1.21093750e-01,
	-2.27539062e-01,	2.45361328e-02,	-1.24511719e-01,	-3.18359375e-01,
	-2.20703125e-01,	1.30859375e-01,	3.66210938e-02,	-3.63769531e-02,
	-1.13281250e-01,	1.95312500e-01,	9.76562500e-02,	1.26953125e-01,
	6.59179688e-02,	6.93359375e-02,	1.02539062e-02,	1.75781250e-01,
	-1.68945312e-01,	1.21307373e-03,	-2.98828125e-01,	-1.15234375e-01,
	5.66406250e-02,	-1.77734375e-01,	-2.08984375e-01,	1.76757812e-01,
	2.38037109e-02,	-2.57812500e-01,	-4.46777344e-02,	1.88476562e-01,
	5.51757812e-02,	5.02929688e-02,	-1.06933594e-01,	1.89453125e-01,
	-1.16210938e-01,	8.49609375e-02,	-1.71875000e-01,	2.45117188e-01,
	-1.73828125e-01,	-8.30078125e-03,	4.56542969e-02,	-1.61132812e-02,
	1.86523438e-01,	-6.05468750e-02,	-4.17480469e-02,	1.82617188e-01,
	2.20703125e-01,	-1.22558594e-01,	-2.55126953e-02,	-3.08593750e-01,
	9.13085938e-02,	1.60156250e-01,	1.70898438e-01,	1.19628906e-01,
	7.08007812e-02,	-2.64892578e-02,	-3.08837891e-02,	4.06250000e-01,
	-1.01562500e-01,	5.71289062e-02,	-7.26318359e-03,	-9.17968750e-02,
	-1.50390625e-01,	-2.55859375e-01,	2.16796875e-01,	-3.63769531e-02,
	2.24609375e-01.	8.00781250e-02.	1.56250000e-01.	5.27343750e-02.

✓ Connected to Python 3 Google Compute Engine backend

Neural language models

Composition functions

- Element-wise functions
 - $\circ~$ e.g., just sum up all of the word embeddings
- Concatenation
- Feedforward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers

Matrix-vector multiplication

Matrix A (dimensions 4×3):

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

Vector x (dimensions 3 imes 1):

$$x = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

Resulting vector b (dimensions 4×1):

$$b = A \cdot x = egin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 \end{bmatrix}$$

Softmax function

For a vector $y = [y_1, y_2, \dots, y_V]$ of dimension V, the softmax transformation is calculated as:

$$ext{softmax}(y) = \left[rac{e^{y_1}}{\sum e^y}, rac{e^{y_2}}{\sum e^y}, \dots, rac{e^{y_V}}{\sum e^y}
ight]$$

where $\sum e^y = e^{y_1} + e^{y_2} + \dots + e^{y_V}$.

Feedforward neural language model

hidden layer

 $h = f(W_1 x)$

f is a non-linear activation function to model non-linear relationships between words

output distribution

 $\hat{y} = softmax(W_2h)$

Activation functions

Recurrent neural networks (RNNs)

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c^t)$$

 h_0

output distribution

$$\hat{y} = softmax(W_2h^{(n-1)})$$

Recurrent neural networks (RNNs)

• RNNs advantages

- can handle much longer histories
- can generalize better over contexts of similar words
- are more accurate at word-prediction

• RNNs disadvantages

- are much more complex
- are slower and need more energy to train
- and are less interpretable than n-gram models

