Backpropagation

CS 5624: Natural Language Processing
Spring 2025

https://tuvlims.github.io/nlp-spring-2025

Tu Vu

\/al

VIRGINIA TECH


https://tuvllms.github.io/nlp-spring-2025

Logistics

e Li Final project group information due tomorrow ki

e Quiz0 will be released on Piazza tomorrow (due February
7th)

e HWO was released on Piazza (due February 7t")



Efforts to replicate DeepSeek-R1

@ Andrej Karpathy

TinyZero reproduction of R1-Zero
"experience the Ahah moment yourself for < $30"

Given a base model, the RL finetuning can be relatively very cheap and
quite accessible.

’, ) Jiayi Pan

We reproduced DeepSeek R1-Zero in the CountDown game, and it just works

Through RL, the 3B base LM develops self-verification and search abilities all
on its own

User: Using the numbers [19, 36, 55, 7], create an equation that equals 65.
Assistant: Let me solve this step by step.

<answer> 55 + 36 - 7 - 19 </answer>

CountDown game

Thread

'3 Junxian He

We replicated the DeepSeek-R1-Zero and DeepSeek-R1 training on 7B
model with only 8K examples, the results are surprisingly strong.

2 Starting from Qwen2.5-Math-7B (base model), we perform RL on it
directly. No SFT, no reward model, just 8K MATH examples for
verification, the resultant model achieves (pass@1) 33.3% on AIME,
62.5% on AMC, and 77.2% on MATH, outperforming Qwen2.5-math-7B-
instruct and being comparable to PRIME and rStar-MATH that use >50x
more data and more complicated components.

Z Increased CoT length and self-reflection emerge

We share the details and our findings in the blog:

. ). N.Sit pl :
Training code and implementation details here: gi

B Model and 8K Examples: Emergin
pasoning with Reinforcement
barning is Both Effective and
ficient

Reasoning Pattern
model initially uses code

leneration for reasoning,

Kucing detailed responses

Math

< Post

Zihan Wang - on RAGEN

2 Introducing RAGEN—the world’s first reproduction of DeepSeek-R1(-
Zero) methods for training agentic Al models!

We're betting big on the future of RL + LLM + Agents € 4. This release
is a minimally viable leap toward that vision.

Code and more intro &: g

LLM - Rollout

After Act

LLM Agents


https://x.com/junxian_he/status/1883183099787571519
https://x.com/junxian_he/status/1883183099787571519
https://x.com/jiayi_pirate/status/1882839370505621655
https://x.com/jiayi_pirate/status/1882839370505621655
https://x.com/wzihanw/status/1884092805598826609
https://x.com/wzihanw/status/1884092805598826609

SFT vs. RL

AT] 28 Jan 2025

[SFT Memorizes, RL Generalizes:]

A Comparative Study of Foundation Model Post-training

Tianzhe Chu** Yuexiang Zhai¥*" Jihan Yang* Shengbang Tong *
Saining Xie** Dale Schuurmans® Quoc V.Le* Sergey Levine” YiMa*"

Abstract

Supervised fine-tuning (SFT) and reinforcement
learning (RL) are widely used post-training tech-
niques for foundation models. However, their re-
spective role in enhancing model generalization
remains unclear. This paper studies the compar-
ative effect of SFT and RL on generalization and
memorization, focusing on text-based and visual
environments. We introduce GeneralPoints,
an arithmetic reasoning card game, and also con-
sider V-IRL, a real-world navigation environ-
ment, to assess how models trained with SFT

generalization (Bousquet & Elisseeff, 2000; Zhang et al.,
2021) remain unclear, which makes it challenging to build
reliable and robust Al systems. A key challenge in analyz-
ing the generalization ability of foundation models (Bom-
masani et al., 2021; Brown et al., 2020) is separating data
memorization' from the acquisition of transferable princi-
ples. We therefore investigate the key question of whether
SFT or RL primarily memorize the training data (Allen-
Zhu & Li, 2023a; Ye et al., 2024; Kang et al., 2024), or
whether they learn generalizable principles that can adapt
to novel task variants.

To address this question, we focus on two aspects of gener-


https://arxiv.org/pdf/2501.17161v1

A recap on neural language models



1.0

hidden layer books laptops

h=f(W x) |

hidden unit:

Y

taking a weighted g —— —
sum of its inputs and 3 200
then applying a
non-linearity

- "0000)

s
N
[N
[ RS
\
EEN

N
N
A

1 \ \\
1 AY N
\ A N
\ \ N
\ ~
\ \ N
[ | | \ ]




Let W =

wi1
w21
w31
W41

w12 W13 -«’131
w w : .

22 23 (dimensions 4 X 3) and x = | x»
w32 W33 23
Wq2 W43 )

Then, the multiplication yields the output vector h as:

w1121 + w122 + W13T3
W21T1 + Wo2T9 + W23T3
W31L1 + W32L2 + W33T3

| W41 21 + We2T2 + W43 T3

(dimensions 4 x 1).

(dimensions 3 X 1).



Let W = [Wl Wy Wg], where:

W, =

Z1
andx = | a9
I3

w11
W21
w31
W41

W12
Wa2

9 Wy = ) W3 —

W32
Wy2

(dimensions 3 X 1).

w13
Wa3
W33
W43

(dimensions 4 x 1)

Then, the multiplication yields the output vector h as:

= W1£U1 + szz + W3ZL‘3 =

W11L1 + W12T2 + W13T3
W91T1 + WXy + Wo3T3
W31T1 + W32 + W33T3

| W41T1 + We2T2 + W43 T3



Deep neural networks

Layer 3

Layer 2

Layer 1

coe
\\\\ /AR YA RY 71
[N N A
VSNr oy Mt

\ 1,7\ 1

N N
\ LA 1
Vo NZASNE NSy
Ve AN N A
% AN
Vi A v SN v
(2) V1,7 \\1, Sabs
N 4 AY //
RO [ 71
AN Y
l \,\ YV\’ A 1 \

[OOO]

hierarchical
representations,
where each layer
builds upon the
previous one



Bias values



Logits Y1
: Y2
Logits: the vector of ] —
scores right before y
the final softmax
Yv_
e”
U = , fort=1,2,...,V



The partial derivative of the loss function

The partial derivative of
the loss function L L
with respect to the

parameter w represents
how much the loss

changesasww
changes. w



The gradient (cont'd)

T 50

the grzi\dier!t points in L a0
the direction of the

steepest increase in - 30

the loss L 50

- 10

WRONG
WAY

negative gradient



The loss landscape of neural nets

A convex function
has at most one
minimum; there are
no local minima to

get stuck in.

https://www.cs.umd.edu/~toma/project/
landscapes/



https://www.cs.umd.edu/~tomg/project/landscapes/
https://www.cs.umd.edu/~tomg/project/landscapes/

The loss landscape of neural nets (cont’d)

The loss for multi-layer neural
networks is non-convex, and gradient
descent may get stuck in local minima

and never find the global optimum

https://www.cs.umd.edu/~toma/project/
landscapes/



https://www.cs.umd.edu/~tomg/project/landscapes/
https://www.cs.umd.edu/~tomg/project/landscapes/

Gradient descent

Loss

one step
of gradient
descent

slope of loss at Wl/

1S negative




Gradient descent (cont’d)

oL

’wt+1=wt—’l7°87
¢

Where:
e 1wy is the parameter at the current time step.
* w41 is the updated parameter after applying the gradient.
e 7 s the learning rate, which controls the step size.
OL

* 3w, is the gradient of the loss function L with respect to the parameter wy, representing

how the loss changes as the parameter changes.



Cross-entropy loss

Y1
Y2

Yv |

The ground truth label

s

1
0,

if i = ¢ (correct class index)

otherwise

Yi —

The predicted probabilities

<

h
P




Cross-entropy loss (cont'd) Leg (i Z y; log §;

Lce(9,y) = — (y1log g1 + y2log go + - - - + yv log gv)

Since the true label y is one-hot encoded, only one term in the sum is nonzero,
corresponding to the correct class ¢, where y, = 1 and y; = 0 for all ¢ # c¢. This

simplifies the sum to:

LCE (Q, y) — —Yc log gc

Since y. = 1, this further reduces to:

Lee(9,y) = —log 4.



Cross-entropy loss (cont'd) | i

Lop(y,y) = —logd. : / ;

Jc — 0,logge — —00 Il

e Ifg. = 0.9, thenlog(0.9) ~ —0.105, and the loss will be small.

e Ifg. = 0.1, thenlog(0.1) ~ —2.302, and the loss will be much larger.



Backpropagation

forward pass

—~—
a=3 o

L=-10

1071 v WAP]  Computation graph for the function L(a, b, c) = c(a+2b), with values for input
nodes a =3, b =1, ¢ = —2, showing the forward pass computation of L.



Backpropagation (cont’d)

d C
d e ) L
oL _oL ge Oe aL
ad oJde ad ad de
downstream local upstream
gradient gradient gradient

Each node (like e here) takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and uses the chain rule to compute
a downstream gradient to be passed on to a prior node. A node may have multiple local
gradients if it has multiple inputs.



Backpropagation (cont’d)

d C
d e ) L
oL _oL ge Oe aL
ad oJde ad ad de
downstream local upstream
gradient gradient gradient

Each node (like e here) takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and uses the chain rule to compute
a downstream gradient to be passed on to a prior node. A node may have multiple local
gradients if it has multiple inputs.



Updating parameters

oL

wt+1:wt—77°87
t



Thank you!



