The Era of BERT

CS 5624: Natural Language Processing Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

VIRGINIA TECH

Logistics

- Homework 1 & Quiz 1 are on their way
- Binal project proposal due on February 28
 - Template is on Piazza

Grok-3 came out last night

200,000 GPUs

Benchmarks

Grok-3 (cont'd)

Reasoning + Test-Time Compute

Grok-3 (cont'd)

Grok-3 (cont'd)

SuperGrok

Big tech companies are considering open-sourcing older AI models

for our next open source project, would it be more useful to do an o3mini level model that is pretty small but still needs to run on GPUs, or the best phone-sized model we can do?

o3-mini phone-sized model

Transformers review

Attention mechanism

Transformers architecture

opened

the: 0.1 students: 0.5 opened: 0.2 their: 0.2 Q K V the students opened their

All computations are parallelized

Attention(Q, K, V) = softmax(Q)

d_v: scaling factor

large products push the softmax function into regions where it has extremely small gradients

Self-attention in the decoder

masking out (setting to -∞) all values in the input of the softmax which correspond to illegal connections

Self-attention in the decoder (cont'd)

masking out all values in the input of the softmax which correspond to illegal connections

Self-attention in the decoder (cont'd)

masking out all values in the input of the softmax which correspond to illegal connections

Multi-head attention

Multi-head attention (cont'd)

These output values are concatenated and once again projected

Cross-attention in the decoder

Cross-attention in the decoder

Encoder (one layer)

Encoder (N layers)

Layer N

....

Layer 2

Layer 1

encoder

Decoder (one layer)

Quadratic complexity

The time complexity of self-attention is quadratic in the input length O(n²)

Different model architectures

- Encoder-only
 - BERT
- Encoder-decoder
 - **T5**
- Decoder-only
 - GPT

Image created by Gemini

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

A learning paradigm shift

training task-specific models from scratch

pretraining and then adapting

Neural network diagrams adapted from Colin Raffel's talk at Stanford MLSys Seminars

Image created by Gemini

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kenton1, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

BERT vs. ELMo

	BERT	ELMo
Model	Transformers	Bidirectional LSTM (Long Short-Term Memory, a variant of RNN)
Pre-training objective(s)	Masked language modeling + next sentence prediction	Left-to-right language modeling
Adaptation method	Fine-tuning	Feature-based (pretrained representations as additional features to task-specific models)

Pretraining

Language modeling using a Transformer encoder

Masked language modeling

cloze task

Multi-head Self-attention (unmasked)

15% - 30% of all tokens in each sequence are masked at random

What if we mask less tokens? cloze task their **Multi-head Self-attention** (unmasked) students [MASK] books opened to 15% - 30% of all tokens in each sequence are masked at random

What if we mask more tokens?

15% - 30% of all tokens in each sequence are masked at random

CLS & SEP tokens

BERT input representation

Fine-tuning

BERT Pretraining & Fine-tuning

